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The conventional spin�orbit interaction due to the presence of an o�-center impurity located in a spherical
quantum dot of �nite con�ning potential has been investigated. The di�erent e�ective masses of dot and barrier are
taken into consideration. The spin�orbit interaction has been calculated in the excited state (2p). The variational
method has been applied by using a new form of the trial wave function in addition to the conventional form that
has been used in previous work. The new form has the advantage of satisfying the boundary conditions at the
interface between dot and barrier in the case of di�erent masses. It has been shown that the spin�orbit interaction
takes its highest value when the impurity is located in the vicinity of the position at which the radial electron
probability takes its maximum value. The corresponding results of a central impurity has been investigated as the
limiting case when the impurity radial coordinate tends to zero. The case of central impurity has been further
explored by using the exact solution in the state (2p) of the radial Schrödinger equation in the presence of the
impurity.

DOI: 10.12693/APhysPolA.125.1197

PACS: 71.55.−i, 71.70.Ej, 73.21.La, 75.70.Tj

1. Introduction

Recently, there has been a great interest in studying
spin�orbit interactions in low dimensional structures due
to their important role in spin transport and in spintronic
devices. The previous studies are concerned with three
types of spin�orbit interactions namely, Rashba [1�18],
Dresselhaus [4, 11, 12, 14, 16, 19, 20] and conventional
interactions [21�25]. The study of Rashba and Dressel-
haus interactions have been mainly considered in two-
-dimensional geometries. Thus they cannot be investi-
gated in a spherical quantum dot which is an isotropic
geometry unless if a magnetic or an electric �eld is ap-
plied. It seems, therefore, that the conventional inter-
actions present the most important type of spin�orbit
interaction in quantum dots. In our opinion very little
has been done to explore this type of interactions and fur-
ther investigations are still needed. Besides, it has been
pointed out in Bella and Navaneethakrishnan [22] that
the Rashba interactions are negligible with respect to the
conventional interactions in GaAs based structures.
The present work is concerned with studying the spin�

orbit interaction in a quantum dot. The interaction arises
due to the presence of a center or o�-center impurity lo-
cated in the dot. The di�erent e�ective masses of dot and
barrier are taken into consideration. The electron energy
and binding energy have to be calculated. For a central
impurity, the binding energy without taking the spin�
orbit interaction into consideration has been mainly in-
vestigated by using the variational method and the exact
analytical approach. For the o�-center impurity no ex-
act solution has been obtained and accordingly the vari-
ational method can only be employed. Regarding the ex-
act solution, the series solution method was used by Zhu
and his co-workers [26�29]. The convergence of the series
solution was found to be slow at some points. Zhu et al.
[27, 28] were forced to use uniformly convergent Taylor
expansions around these points. This indicates that the
solution obtained in these cases may deviate to a certain

extent from the exact solution. Along the same direction
Chuu et al. [30], Yang et al. [21] and Goldman and Joslin
[31] have derived alternative exact analytical solutions.
In the last reference the simple case of in�nite con�ning
potential has been considered while in the �rst two refer-
ences the exact solution takes di�erent forms in the two
cases when the electron energy is negative or positive.
This gives rise to some problems since the electron en-
ergy is always determined from the boundary conditions
that depend on the form of the wave functions. Thus, in
some cases it is not clear which form of the exact solu-
tion has to be taken. Recently, Mikhail and El Sayed [32]
introduced new analytical forms for the exact solution
that are valid for any electron energy positive or nega-
tive. They are also valid for di�erent masses, di�erent
dielectric constants, and �nite con�ning potentials. The
method was applied in Ref. [32] for the ground state (1s).
The variational method has been applied for both cen-

tral and o�-central impurities. The conventional form of
the trial wave function has been used in most of the ear-
lier works (Montenegro and Merchancano [33], Peter [34],
Dane et al. [35, 36], Akbas et al. [37] and Mikhail and
Ismail [38, 39]). In Mikhail and El Sayed [32] a new
form of the trial wavefunction has been introduced for
the ground state (1s) for central and o�-central impuri-
ties. It has the advantage that it satis�es the required
boundary conditions in the case of di�erent masses un-
like the conventional trial form. Also, in Çakir et al. [40],
Özmen et al. [41] and Yakar et al. [42, 43] a modi�ed
variational optimization approach in the case of central
impurity has been explored. However, their approach
cannot be applied to the case of o�-central impurity as
the elements of the basis used depend on the spherical
harmonic functions.
The conventional spin�orbit interaction vanishes for

the ground state (1s). Thus in order to calculate such
interaction we have to consider the excited state (2p). In
all previous works (Refs. [21�25]) only the case of cen-
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tral impurity has been considered by using equal e�ec-
tive masses of dot and barrier. In the present work we
deal with both central and o�-central impurities when
the e�ect of the di�erent masses of dot and barrier are
taken into account. The o�-central impurity has been
dealt with by using the variational method. Two forms
of the trial wavefunction have been utilized, the conven-
tional form and a new form that has the advantage of
satisfying the required boundary conditions in the case
of di�erent masses. The new form has been constructed
for the state (2p) in a similar manner to the new forms
introduced for the ground state (1s) in Mikhail and El
Sayed [44, 45, 32] for the cases of quantum well wire
(QWW), coaxial QWW and multilayered quantum dot
(QD), respectively. Also, we have shown that the impu-
rity location at which the spin�orbit interaction takes its
highest value is consistent with the position at which the
probability of �nding the electron in the quantum dot is
maximum.
A similar study was performed in Mikhail and Ismail

[39] regarding the binding energy Eb of the state (2p)
where it was shown that Eb takes its maximum value
when the impurity is located at the position of the max-
imum radial electron probability. The corresponding re-
sults in the case of equal masses can be inferred by equat-
ing the masses of dot and barrier in the expressions ob-
tained. Also, the results in the case of central impurity
can be deduced by taking the limit when r0 → 0, where
r0 is the impurity location measured from the center of
the dot. The case of central impurity has further been in-
vestigated in the required excited state (2p) by employing
the exact solution obtained in Mikhail and El Sayed [32].
The results obtained by using the exact solution for cen-
tral impurity are higher by about 1.36% and by about
14.6% than the results obtained by using the new and
conventional forms of the trial variational wave function,
respectively, at R = 0.64a∗. It is thus clear that the
new form of the trial wave function yields results for the
spin�orbit interaction which are very close to the corre-
sponding results of the exact approach for dots of small
radius.
The paper is organized as follows. In Sect. 2, the ba-

sic equations are given in addition to the solution in the
absence of impurity. The case of o�-central impurity is
considered in Sect. 3 by applying the variational method
to calculate the electron energy, the binding energy, and
spin�orbit interaction. The conventional form of the trial
wave function is used in Sect. 3.1 while the new form
has been introduced and applied in Sect. 3.2. Section 4
is devoted to consider the exact analytical solution for
the central impurity in the state (2p). The correspond-
ing expression for the spin�orbit interaction has been de-
rived. Finally, the numerical results obtained in the case
of GaAs�Ga1−xAlxAs dots are displayed and discussed
in Sect. 5.

2. Basic equations

The Hamiltonian operator that describes the problem
of a hydrogenic donor impurity located in a spherical

quantum dot at the position r0 in the presence of the
spin-orbit interaction is given by

Ĥ = Ĥ1 +
B̂

ε|r − r0|3
, (1a)

where
Ĥ1 = Ĥ0 −

e2

ε|r − r0|
(1b)

and

Ĥ0 =
P̂ 2

2m∗(r)
+ V (r). (1c)

In Eq. (1c) Ĥ0 is the Hamiltonian in the absence of
the impurity and spin�orbit interaction while the sec-
ond terms in Eqs. (1b), (1a) represent, respectively, the
Coulomb interaction between the electron and the impu-
rity and the spin�orbit interaction. Here ε is de�ned as

ε = 4πεrε0, (2)
where εr and ε0 are the relative and free space permit-
tivities. Also, m∗(r) is the e�ective mass of the electron
and V (r) is the �nite potential energy of the barrier. The
di�erent e�ective masses of the dot and the barrier are
taken into consideration, accordingly

m∗(r), V (r) =

{
m1, 0 if 0 < r < R,

m2, V0 if R < r <∞.
(3)

m1 and m2 are the e�ective masses of GaAs and
Ga1−xAlxAs, where m2 depends on the Al concentra-
tion (x).

The spin�orbit interaction operator B̂ is given accord-
ing to Gri�ths [46] by

B̂ =
e2

2m∗2(r)c2
Ŝ · L̂ =

e2

4m∗2(r)c2
(
Ĵ2 − L̂2 − Ŝ2

)
, (4)

where c is the speed of light, L̂, Ŝ and Ĵ are the angular
momentum, spin and total angular momentum operators.
It is worthwhile noticing that for the hydrogenic states
(1s) and (2s) the operator B̂ and accordingly the spin�
orbit interaction vanish, since L̂ = 0 (the orbital angular
momentum quantum number l = 0). For this reason, we
consider in the present work the hydrogenic excited state
(2p) for which l = 1.

In the rest of the article the reduced units of the
Bohr radius a∗ = ~2ε/(m1e

2) and e�ective Rydberg
R∗ = m1e

4/2~2ε2 will be used, for simplicity.

Now, in the absence of the hydrogenic impurity and the
spin-orbit interaction, the exact electron eigenfunction of
the Schrödinger equation corresponding to the Hamilto-
nian Ĥ0 in the ground state is given by (Ref. [22])

φ(r) =

{
φ1 = N sin(k1r)

r , 0 < r < R,

φ2 = N sin(k1R)
r ek2R e−k2r, R < r <∞.

(5)

The corresponding eigenvalue E0 is given in Rydberg
units by

E0 = k21 = V0 −
m1

m2
k22. (6)

Also, the boundary conditions that have to be satis�ed
are



Spin�Orbit Interaction in a Spherical Quantum Dot 1199

φ1(R) = φ2(R),
1

m1

∂φ1
∂r

∣∣∣
r=R

=
1

m2

∂φ2
∂r

∣∣∣
r=R

. (7)

The �rst stands for the continuity of the wavefunction at
the interface r = R that is automatically satis�ed due to
the suitable choice of the form of φ1 and φ2. The second
represents the continuity of the wave function gradient
being modi�ed to cope with the di�erent masses on the
two sides of the interface. These boundary conditions
lead to the transcendental equation

tan(k1r) =
k1R

1− m1

m2
(1 + k2R)

, (8)

by solving it, we obtain the lowest subband energy E0.
In the presence of the impurity (Eq. (1b)) the exact an-

alytical solution can be obtained for the case of central
impurity (Mikhail and El Sayed [32]). The exact analyt-
ical solution for the impurity state (2p) will be given in
Sect. 4 in the present article. For the o�-center impurity,
no exact solution has been inferred. Thus the variational
principle is the preferable technique that can be applied
in the case of an o�-center impurity. This technique will
be explored in the following section.

3. O�-center impurity

As has been pointed out at the end of the previous sec-
tion, the case of an o�-center impurity can only be dealt
with by using the variational principle. We further follow
the same approach used by Bella and Navaneethakrish-
nan [22], Chaudhuri and Bajaj [47], Latge et al. [48] and
Villamil et al. [49, 50] and take the part of the vari-
ational trial wave function that represents the electron
in the QD to be in the ground state (Eq. (5)) for any
hydrogenic impurity state.
The trial wave function will thus be taken in the form
ψnlm(r) = Nφ(r)Γnlm(r), (9)

where φ(r) takes the same form as Eq. (5) but without
the normalization constant N . Γnlm(r) is the part of the
trial wave function that represents the hydrogenic im-
purity in the state determined by the quantum numbers
n, l,m. In the present article the state (2p) will be con-
sidered and accordingly n = 2, l = 1, m = 0. The states
(2p±) (m = ±1) will not be considered here as it has been
shown in Ref. [22] that these states yield the same results
as the state (2p) (m = 0) for central impurity. For o�-
-center impurity, the results should di�er. However, this
point is postponed to be investigated in a future article.
As regards Γ210 of the excited state (2p), two di�erent

forms will be considered. The �rst is the conventional
form which has been used in most of the earlier works
on quantum dots. The second is a new form that resem-
bles the new forms which have been introduced for the
ground state (1s) in Mikhail and El Sayed [44, 45, 32] for
the cases of QWW, coaxial QWW and multilayered QD,
respectively. These two forms will be considered in the
following two subsections.

3.1. Conventional wave function

Here, we follow the same approach used by earlier
workers and utilize in the present case of di�erent masses
the same trial wave function that has been used in the

case of equal masses. We thus take
Γ210(r, θ) = X cos θe−λX ,

where
X = |r − r0| = (r2 + r20 − 2rr0 cos θ)

1/2, (10)
r = (r, θ,Φ) and λ is the variational parameter. From
now on Γ210 will be denoted by Γ for simplicity. Also,
the normalization constant N in Eq. (9) is determined
from the normalization condition
〈ψ(r), ψ(r)〉 = 1. (11)

The expectation energy eigenvalue of the operator Ĥ1 is
given by

E = 〈ψ, Ĥ1ψ〉, (12)
and the corresponding binding energy of the impurity is
consequently given by

Eb = E0 − Emin. (13)
The value of λ is obtained by minimizing the energy E
in Eq. (12).

In order to derive analytical expressions for E, we use
the relations
∇2ψ = Γ∇2φ(r) + 2∇φ ·∇Γ + φ(r)∇2Γ (14)

and
2〈ψ,∇φ ·∇Γ 〉i =Wi − 〈ψ, φ∇2Γ 〉i − 〈φ, φ|∇Γ |2〉i,
i = 1, 2, (15a)

where

Wi = 2π

∫ π

0

(
φ2i
∂Γ

∂r
Γr2

)Ri

Ri−1

sin(θ)dθ, i = 1, 2,

(15b)
R0 = 0, R1 = R, R2 =∞.

The results in Eqs. (15a, b) have been obtained by
integrating by parts. They are consistent with the results
given in Eqs. (11a, b) of Ref. [32] for the multilayered QD.
It can then be shown after some algebra that E is given
by

E = E0 +

[
− 8r20

(
Q1 +

m1

m2
Q2

)
− 1

R2

(
1− m1

m2

)
× φ21(R)W + 4(D1 +D2)

]/ d

dλ
(D1 +D2), (16)

where

Qi =

∫ Ri

Ri−1

φ2iFrdr, (17a)

Di =

∫ Ri

Ri−1

φ2i
J

r
dr, i = 1, 2, (17b)

F =

∫ r+r0

|r−r0|
X|∇Γ |2dX, (17c)

J =

∫ r+r0

|r−r0|
X2(r2 + r20 −X2)2 e−2λX dX, (17d)

W =

∫ R+r0

R−r0
e−2λX(λX − 1)(R2 + r20 −X2)2
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× (X2 +R2 − r20)X dX, (17e)
and

|∇Γ |2 = e−2λX
{[

cos θ(1− λX) +
X sin θ

r

]2
− sin 2θ

r
(1− λX)(X + r0 sin θ)

}
. (17f)

In (17f) |∇Γ |2 has to be expressed in terms of X by
using Eq. (10).
Now since the spherical harmonics Ylm(θ, φ) are in-

cluded in the form of Γnlm the angular momentum term
L̂2 in the form of the spin operator B̂ can be replaced
by ~2l(l + 1). Also, an electron eigenspinor | 12 ,±

1
2 〉 has

to be added to the form of the trial wavefunction ψ(r)

(Eq. (9)) in order to replace the operators Ĵ2 and Ŝ2 in
the form of B̂ by ~2j(j + 1) and 3~2/4. Accordingly

B̂ ≡ ~2

4m∗2c2R∗a∗3
[
j(j + 1)− l(l + 1)− 3/4

]
, (18)

where the factor 1/(R∗a∗3) has been added to adjust the
units of the energy and r in the second term of Eq. (1a).
Also, j = l ± 1/2 and thus j = 3

2 ,
1
2 for the state (2p)

(l = 1). It is readily shown that the expectation energy
due to the spin�orbit interaction will take the form

Es.o. = −2bαj
[
S1 +

(
m1

m2

)2
S2

]/ d

dλ
(D1 +D2), (19)

where

Si =

∫ Ri

Ri−1

φ2iM
dr

r
, i = 1, 2, (20a)

M =

∫ (r+r0)

|r−r0|
e−2λX

(
r2 + r20 −X2

)2
dX (20b)

and

b =
R∗

m1c2
, α3/2 = 1, α1/2 = −2. (20c)

The eigenspinors | 12 ,±
1
2 〉 will not a�ect the previous cal-

culations of the binding energy. The value of Es.o. calcu-
lated from Eq. (19) was found to be much less (less by
a factor of the order of 10−5) than the energy E calcu-
lated from Eq. (16). We have thus preferred to calculate
the variational parameter λ from the minimization of the
energy E in Eq. (16) prior to the calculation of Es.o..
An alternative approach is to include Es.o. in Eq. (16)
in order to take part in the minimization procedure and
in the determination of λ. However, this approach will
obviously give rise to some complications in the energy
expression used in the calculation of λ without giving any
appreciable change in its value.

3.2. New form of the trial wave function

The conventional form of the trial wave function
Eq. (9) with Γ being de�ned from Eq. (10) does not
satisfy the second boundary condition in Eq. (7) in the
case of di�erent masses. This, in turn, indicates that the
form of Γ given in Eq. (10) may not be a suitable choice
if di�erent masses are considered. It has to be replaced
by a new form so that the resulting trial wave function
ψ(r) satis�es the required boundary conditions. Here we

introduce a new form of Γ for the state (2p) that is anal-
ogous to those used in Mikhail and El Sayed [44, 45, 32]
for the state (1s). Accordingly we take

Γ (r, θ)=



Γ1 = X cos θe−λX ,

0 < r < R,

Γ2 = X
m2
m1

X
(m2

m1
−1)

1

cos θe
−λ

(
1−m2

m1

)
X1e−λ

m2
m1

X,

R < r <∞,
(21)

where
X1 = (R2 + r20 − 2Rr0 cos θ)

1/2. (22)
It is readily shown that ψ(r) as de�ned by Eq. (9)
with Γ given by Eq. (21) satis�es the boundary condi-
tions (Eq. (7)) as is required.
Now, by using the new form of the trial wave function

and the same type of calculations used in the previous
section, it can be shown that Eq. (15a) still takes the
same form but without the term Wi on the right hand
side (rhs). This term has been obliterated due to the fact
that the new trial wave function satis�es the required
boundary conditions. This seems to be one of the advan-
tages of the present approach. Finally the expectation
value of the operator Ĥ1 is given by

E = E0 +

[(
Q̃1 +

m1

m2
Q̃2

)
− 2(D̃1 + D̃2)

]
/
(P̃1 + P̃2), (23)

where

Q̃i =

∫ π

0

∫ Ri

Ri−1

φ2i (r)|∇Γi|2r2 sin θdrdθ, (24a)

D̃i =

∫ π

0

∫ Ri

Ri−1

φ2i (r)Γ
2
i (r, θ)

r2 sin θ

X
drdθ, (24b)

P̃i =

∫ π

0

∫ Ri

Ri−1

φ2i (r)Γ
2
i (r, θ)r

2 sin θdrdθ, i = 1, 2,

(24c)

|∇Γ2|2 =

(
m2

m1

)2

Γ 2
2

[(
1

X
− λ
)2

+ 2

(
1

X
− λ
)

× r0 sin θ

X
U + U2

]
, (25a)

U =

(
m1

m2
− 1

)(
1

X1
− λ

)
r0R sin θ

X1r
− m1

m2

tan θ

r
,

(25b)
and |∇Γ1|2 is de�ned as in Eq. (17f).
Also Es.o. is given by

Es.o. = bαj

[
S̃1 +

(
m1

m2

)2

S̃2

]/
(P̃1 + P̃2), (26a)

where

S̃i =

∫ π

0

∫ Ri

Ri−1

φ2i (r)Γ
2
i (r, θ)

r2 sin θ

X3
drdθ, i = 1, 2.

(26b)

The results in the two special cases of equal masses and
of central impurity can be obtained by taking m1 = m2
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and by taking the limit when r0 → 0, respectively, in
the expressions obtained for E, Es.o. in Sects. 3.1, 3.2.
They are not given here due to their length and since the
derivations are straightforward.
As was pointed out previously an exact analytical so-

lution for the Schrödinger equation corresponding to the
Hamiltonian Ĥ1 in the case of central impurity and di�er-
ent masses has been derived in Mikhail and El Sayed [32].
However, the method has only been applied in [32] for the
ground state (1s). The solution in the excited state (2p)
will be presented in the following section together with
the corresponding calculations of the spin�orbit interac-
tion term.

4. Exact analytical solution � for central

impurity

It is readily shown that the radial Schrödinger equation
corresponding to Ĥ1 in the presence of a central impurity
(r0 = 0) can be put in the form

1

ψ(ρ)

d

dρ
ρ2

dψ

dρ
− l(l + 1) + ρ2

(
−1

4
+
λ

ρ

)
= 0, (27)

where ρi = γir (i = 1, 2), γ1 = 2
√
−E, λ1 = 2

γ1
= 1√

−E ,

and

γ2 = 2

√
m2

m1
(V0 − E),

λ2 =
2m2

m1

1

γ2
=

√
m2

m1(V0 − E)
. (28)

In Eqs. (28) i = 1, 2 represent, respectively, the two re-
gions inside (0 < r < R) and outside (R < r < ∞) the
dot. It has been consequently shown in Mikhail and El
Sayed [32] that the solution of Eq. (27) can be expressed
as

ψ(ρ) = e−ρ/2ρlG(ρ), (29)
where G(ρ) is found to be the con�uent hypergeometric
function 1F1(l+1− λ, 2l+2, ρ) or U(l+1− λ, 2l+2, ρ).
Thus for the excited state (2p) (l = 1), the exact solu-
tions are given by

ψ(r) =


ψ1(r) = N e−ρ1/2ρ1 1F1(2− λ1, 4, ρ1),
0 < r < R,

ψ2(r) = NN2 e
−ρ2/2ρ2U(2− λ2, 4, ρ2),

R < r <∞.

(30)

The energy E of the system and the coe�cient N2 can
be determined from the boundary conditions (7) after
replacing φ(r) by ψ(r) while the coe�cient N can be
obtained from the normalization condition (11). The im-
purity binding energy is given by

Eb = E0 − E. (31)
Finally, the spin�orbit interaction energy is given by

Es.o. = bαj

[
˜̃S1 +

(
m1

m2

)2
˜̃S2

]/( ˜̃P1 +
˜̃P2

)
, (32)

where

˜̃Si =

∫ Ri

Ri−1

|ψi(r)|2
dr

r
(33a)

and

˜̃Pi =

∫ Ri

Ri−1

|ψi(r)|2r2dr, i = 1, 2. (33b)

5. Numerical results

The results obtained in the previous sections are ap-
plied in the present section to calculate the spin�orbit
interaction energy in the case of a central and o�-
-central impurity located in a GaAs�Ga1−xAlxAs, spher-
ical quantum dot. The required input parameters are the
con�ning potential V0, the e�ective masses m1, m2 and
the dielectric constant εr. They are determined in terms
of the Al concentration x by the following relations ac-
cording to Casey [51] and Adachi [52]:

V0 = 0.7482x (eV), εr = 12.58, (34a)

m1 = 0.067m0, m2 = (0.067 + 0.083x)m0. (34b)
In the following calculations V0 = 147.4 meV which is the
same value used in Ref. [22]. It corresponds to x = 0.197.
Also, the values of the e�ective Rydberg R∗ and e�ective
Bohr radius a∗ are given by

R∗ ≈ 5.72 meV and a∗ ≈ 100 Å. (34c)
The energy E0 in the absence of impurity and spin�orbit
interaction is determined from Eqs. (6), (8). Moreover,
the following results are only given for j = 3

2 . The re-
sults for j = 1

2 can be easily obtained by multiplying the
results for j = 3

2 by a factor (−2).
In Fig. 1, the spin�orbit energy is displayed as a func-

tion of the dot radius in the case of a central impurity.
A comparison is given between the results obtained by
using the exact solution (Eq. (32)) (case 1) and by using
the variational method with the new trial wave function
(Eqs. (26a, b)) (case 2) and with the conventional trial
wave function (Eqs. (19), (20)) (case 3). Di�erent factors
have in�uenced the choice of the minimum value of R in
this �gure. According to Mikhail and Ismail [39] in the
absence of impurity

(Rmin)1s = π/(2
√
V0) ≈ 0.31a∗

and
(Rmin)2p = π/

√
V0 ≈ 0.62a∗.

In spite of the fact that in the absence of impurity the
electron is taken to be in the state (1s) (Eq. (5)), it
is found that in the presence of the central impurity in
the state (2p) the expectation energy (determined from
Eq. (16) or Eq. (23)) approaches V0 asR→ 0.62a∗. Thus,
for the variational method we have restricted the calcula-
tions to begin from R = 0.634a∗ if the conventional form
of the trial wave function is used and from R = 0.556a∗

if the new form of the trial wave function is used. On the
other hand, for the exact solution, no minimum critical
dot radius exists since the potential of the impurity is not
a square well potential but is proportional to 1/r (Yang
et al. [21]). The results can thus be extended to a very
small dot radius (R = 0.1a∗).
The general behavior of the three sets of results shown

in Fig. 1 is similar. The spin-orbit energy increases as the
dot radius decreases until it reaches a maximum value
(cases 1 and 2) about R = 0.6a∗. It starts to decrease for
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Fig. 1. Spin�orbit energy (Es.o.) against the dot radius
(R) for a central impurity.

R < 0.6a∗ since the probability of the electron tunneling
to the barrier increases for dots of small radius.
The results obtained by using the exact solution

(case 1) are higher than the other two cases. It is higher
by about 8.59% and 14.6% at R = 5a∗ and R = 0.64a∗,
respectively, than the results obtained by using the con-
ventional trial wavefunction while it is higher by about
8.54% and 1.36% at R = 5a∗ and R = 0.64a∗ than the
results obtained by using the new trial wave function.
It is thus clear that the results obtained by using the
new form of the trial wave function approach the exact
solution at small values of R.
It is also of importance to point out that the present

results are less by an order of magnitude than the results
of Refs. [22, 23]. This seems to be due to the numerical
value of the factor (b) in Eqs. (19), (20c). In the present
work we have found that

b=0.095432×10−5 meV =0.016684×10−5R∗. (35a)
The corresponding value in Refs. [22, 23] has been esti-
mated and was found to be

b = 1.2059× 10−5 meV. (35b)
Thus

(b)Eq. (35b)/(b)Eq. (35a) ≈ 12.636, (35c)
which is equivalent to (4π) or to (εr). We have calculated
the value of (b) in Eq. (35a) in several ways and to the
best of our knowledge it seems to be correct. Thus either
the factor (4π) or (εr) is missing in the results of Refs.
[22, 23].
Also, in order to compare the present results with the

results reported in Yang et al. [21] and Özmen et al. [25],
we have used the input parameters

m1 = m2 = m0, εr = 1, V0 = 5 eV,

R∗ = 13.6 eV, a∗ = 0.529 Å, (36)
of the free space hydrogen atom. This gives

b = 0.361455 meV = 0.0265776× 10−3R∗. (37)
The results obtained for the spin�orbit interaction in the
case of central impurity using the above input parameters
together with the corresponding results of Yang et al. [21]
are given in Table. The above comparison shows that
the results obtained using the exact solution are identi-

cal with the results of Yang et al. [21]. The di�erence
between the two sets is less than 0.4%. The results ob-
tained by using the variational method are lower than
the results of the exact solution and than the results of
Yang et al. [21] by about 12%. Here the two forms of
trial wave function (new and conventional) are equiva-
lent since m1 = m2. Also, the results of the spin�orbit
interaction of Refs. [21] and [25] are consistent. For this
reason, the comparison in Table is given only between
the present results and those of Ref. [21].

TABLE
Comparison between the present results of spin�orbit
interaction and the results of Yang et al. [21].

R(a∗)
Es.o. (10−2 meV)
Yang et al. [21]

Es.o. (10−2 meV)
Present results

Variational
method

Exact
solution

0.1
4
8
17

1.51
3.67
1.9
1.51

�
3.4036
1.6586
1.4316

1.5061
3.655
1.8922
1.508

Regarding the recent published article of Yakar
et al. [24], they have calculated the results in the case of
in�nite con�ning potential QD with the same input pa-
rameters of GaAs given in Eqs. (34a,b,c) of the present
work (x = 0, m1 = m2 = 0.067m0). They, however,
stated that their results of Es.o. tends to the value of hy-
drogen atom for quantum dots of large radius in atomic
units. This contradicts the fact that the parameter (b)
(Eq. (20c)) and accordingly Es.o. depend on R∗ and m1.
It thus di�ers in atomic units from one set of input pa-
rameters to another, unlike the electron energy, Coulomb
interaction and binding energy. It seems, therefore, that
the results of Yakar et al. [24] are incorrect if the input
parameters of GaAs are used. In order to con�rm this
conclusion we have calculated the value of Es.o. in the
case of in�nite con�ning potential with the GaAs input
parameters (Eq. (34a, second part) and Eqs. (34b,c, with
x = 0)). The results obtained in atomic units are less
than those of Yakar et al. [24] by an average factor 159.
In fact we have found that this factor is equivalent to the
ratio between the value of the parameter (b) of the free
space hydrogen atom in atomic units (Eq. (37)) and the
parameter (b) of GaAs in atomic units (Eq. (35a)). This
again indicates that in Yakar et al. [24] the spin�orbit
interaction has been calculated for a free space hydrogen
atom unlike what has been stated that the calculations
have been performed for an impurity located in a GaAs
quantum dot.
The rest of the calculations in this section are per-

formed using the input parameters given in Eqs. (34a,b,c)
only. In order to clarify the e�ect of using the di�erent
masses of dot and barrier we give in Fig. 2 a comparison
between the results of spin�orbit interaction obtained by
using the exact solution with di�erent (case 1) and equal
(case 2) masses. The results in the case of equal masses
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Fig. 2. Comparison between the spin�orbit energy for
a central impurity obtained using the exact solution in
the cases of di�erent (case 1) and equal (case 2) masses.
The inset shows the results in the range 0.47a∗ < R <
0.56a∗.

(case 2) are higher than the results of di�erent masses
(case 1) for R > 0.63a∗ in spite of the fact that the bind-
ing energies in case 2 are less than the corresponding
binding energies in case 1. This may be attributed to
the factor (m1/m2)

2 that appears in the second term of
the numerator in Eq. (32). The results of equal masses
(case 2) are higher by about 1% and 1.56% at R = 5a∗

and R = 0.64a∗, respectively, than the results of di�er-
ent masses (case 1). However, for R < 0.63a∗, the results
in case 1 starts to be higher than the results in case 2.
This is due to the fact that the consideration of di�erent
masses decreases the probability of tunneling at small R.
The di�erence between the two sets of results becomes
of the order of 25% at R = 0.55a∗ and of the order of
86.5% at R = 0.5a∗. This con�rms that the consideration
of the di�erent masses (case 1) has a strong in�uence on
the spin�orbit energy in this range. The results displayed
in the inset of Fig. 2 emphasize further this conclusion.

Fig. 3. Plot of spin�orbit energy (Es.o.) of an o�-
-central impurity against the dot radius (R). The vari-
ational method is used with the new trial wavefunction.

The case of o�-center impurity is shown in Fig. 3 for
r0 = R/4, R/2, 3R/4. In this case no exact analytical

solution has been obtained. Thus the results presented
in Fig. 3 are obtained by using the new form of the trial
wave function for which the spin�orbit energy approaches
the exact solution for a central impurity (Fig. 1). For all
the impurity locations the spin�orbit energy increases as
the dot radius decreases within the range of R considered.
Also the results obtained for r0 = R/2 are higher than
those of r0 = R/4 and r0 = 3R/4. This clari�es the fact
that the spin�orbit interaction increases as r0 increases
until it becomes maximum near the position at which
the probability of �nding an electron in the state (2p) is
maximum. The same behavior was also exhibited for the
binding energy Eb in Mikhail and Ismail paper [39].

Fig. 4. Comparison between the spin�orbit energy for
an o�-central impurity (r0 = R/4) for the cases of dif-
ferent masses (m1 6= m2) and equal masses (m1 = m2).

In Fig. 4 the spin�orbit energy is given for an o�-
-central impurity located at r0 = R/4 in the cases of
di�erent masses (m1 6= m2) using the new (case 1) and
conventional (case 2) wave functions and of equal masses
(m1 = m2) (case 3). The comparison shows that the re-
sults obtained in case 1 (new wave function) are higher
than those obtained in case 2 (conventional wave func-
tion) by about 5.28% at R = 1.7a∗ and by about 0.33%
at R = 5a∗. Moreover, the results obtained for equal
masses (case 3) are higher by about 1.75% and 2.69%
at R = 5a∗ from the results of cases 1 and 2, respec-
tively. Also, they are higher by about 1.94% and 7.63%
at R = 1.7a∗ from the results of cases 1 and 2. Thus
the results of an o�-central impurity con�rm the same
conclusion found in the case of central impurity (Fig. 2)
that the consideration of the di�erent masses of dot and
barrier decreases the spin-orbit energy for R > 0.63a∗.

6. Conclusions

In all previous treatments the conventional spin�orbit
interaction has been calculated for a central impurity
assuming equal masses of dot and barrier. In the
present work we have performed the calculations for
both o�-central and central impurities considering dif-
ferent masses of dot and barrier. The di�erent masses
have to be taken into consideration in the case of GaAs�
Ga1−xAlxAs �nite con�ning potential dot due to the de-
pendence of the barrier e�ective mass on the Al concen-
tration (x).
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The variational method has been applied in the case
of o�-central and central impurities using two forms of
the trial wave function, the conventional form and a new
form that satis�es the required boundary conditions in
the case of di�erent masses. The new form has consider-
ably improved the results of the spin�orbit interaction.
In the case of central impurity the spin�orbit interac-

tion has been also calculated using the exact solution of
the radial SChrödinger equation in the presence of the
impurity for the state (2p). The results are higher than
those obtained using the variational method. However,
the results of the new form of the trial wave function ap-
proach those obtained using the exact solution for dots of
small radius. Also, the results obtained using the exact
solution indicate that the consideration of the di�erent
masses has a signi�cant e�ect on the spin�orbit energy
for R < 0.63a∗.
The results have been compared with the results re-

ported in earlier work. The results obtained using the
exact solution for a central impurity are identical with
the results of Yang et al. [21] and of Özmen et al. [25]
to within 0.4%. Regarding the other earlier treatments
we have suggested some amendments to reconcile their
results with the present results. In this connection, it is
worthwhile pointing out that the comparison has been
made only for central impurity since all earlier treat-
ments were performed in this case. Moreover some of
the methods used in these treatments (Yang et al. [21],
Yakar et al. [24] and Özmen et al. [25]) cannot be applied
for o�-central impurities.
Finally, we would like to con�rm that in spite of the

small order of magnitude of spin�orbit interaction with
respect to the electron energy and binding energy it can
be separately measured by spintronic devices where it
plays the essential role.
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