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The vortex �ow which follows intense sound propagating in a bubbly liquid, is considered. The reasons for
acoustic streaming are both nonlinearity and dispersion. That makes streaming especial as compared with that in
a Newtonian �uid. Conclusions concern the vortex �ow induced in a half-space by initially harmonic or impulse
Gaussian beam. The vortex �ow recalls a turbulent �ow with increasing in time number of small-scale vortices in
the vicinity of the axis of a beam's propagation.
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1. Introduction

Acoustic waves in unbounded media may reveal notice-
able dispersion under some special conditions [1�3]. That
concerns, among other, inhomogeneous media and these
with unusual thermodynamic properties, like gases with
relaxing oscillatory degrees of a molecule's freedom or �u-
ids with a chemical reaction [4]. A liquid which involves
gaseous bubbles is much more compressible than the pure
liquid, so that its acoustical properties di�er considerably
from that in both pure gas or liquid [2, 5]. The sound
speed is fairly smaller than that in a liquid, nonlinearity
increases by orders of magnitude, and features of sound
propagation strongly depend on its frequency. Sound of
�nite magnitude is nonlinearly distorted and does inter-
act with the non-wave �uid motions as it propagates.
Studies of nonlinear e�ects are important not only rela-
tively to sound itself, but in connection with phenomena
induced in the �eld of sound.
A model which describes the �nite-magnitude sound

propagation over a bubbly liquid, imposes inclusion of
set of bubbles (i.e., oscillators) into the bulk of a liquid
[5�9]. The equation which governs sound beam is anal-
ogous to the famous Khokhlov�Zabolotskaya�Kuznetsov
(KZK) equation [2, 10, 11], but it includes a dispersive
term instead of standard attenuation or supplemented it
[2, 10]. General analytical methods to solve the KZK
equation are still absent [12], all the more so solution of
equation which governs sound in a bubbly viscous liquid.
Studies of nonlinear �uid dynamics must start from

equations describing �uid dynamic of the mixture as a
continuum. In three dimensions, both non-wave modes,
i.e., vorticity and entropy modes (these names come from
the linear theory of �ows of Newtonian uniform un-
bounded �uids [13]) are nonlinearly generated in the �eld
of sound [14, 15]. The main di�culty is to describe as
precisely as possible the nonlinear propagation of sound
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beam itself and interaction of sound and non-wave modes.
We derive weakly nonlinear equations for every mode an-
alytically, and use numerical methods to solve them ap-
proximately in the context of acoustic streaming. The
procedure of subdivision of individual dynamic equations
was applied by one of the authors in the problems of
acoustic heating and streaming in Newtonian and some
non-Newtonian �uids [16�18].

2. Equations governing perturbations

in bubbly liquid

We consider the mixture which consists of compressible
liquid and identical spherical bubbles of an ideal gas. All
bubbles are of the same radii at equilibrium, and there
is no heat and mass transfer between liquid and gas. We
assume also that motions of the bubbles do not in�uence
each other and that they pulsate in their lowest, radially
symmetric mode. The mixture as a whole may be treated
as the homogeneous continuum. Pressure of the mixture
equals pressure of a liquid [5, 19]. Quantities relating to
gas, liquid, or to the mixture, are marked by indices g,
l, and mix, correspondingly. The unperturbed quantities
are marked by additional zero, and the disturbed ones
are primed. Density of the mixture is given by

ρmix =
ρgρl

βρl + (1− β)ρg
, (1)

where β is the constant mass concentration of gas in the
mixture. The initial volume concentration of gas in the
mixture, α, equals

α = β
ρmix0

ρg0
. (2)

Acoustics of incompressible liquids (when the sound
speed in a pure liquid, cl, tends to in�nity) including
bubbles was originally studied by van Wijngaarden [5].
Involving of liquid compressibility corrects the nonlinear
parameter of sound [2, 20]. The following equations in
di�erential form declare conservation of momentum, en-
ergy, and mass:

∂v

∂t
+ (v ·∇)v +

1

ρmix
∇p = 0,

(1138)
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∂p

∂t
+ c2l

∂ρl
∂t
− c2l (γl − 1)

ρl0
ρl
∂ρl
∂t

= 0,

∂ρmix

∂t
+ ∇(vρmix) = 0, (3)

where v, p denote velocity and pressure in the mixture,

γl =
Cp,l

CV,l

ρl0
pl0

(
∂pl
∂ρl

)
T=const

, where Cp and CV denote heat

capacities at constant pressure and density. For water
at normal conditions, it equals approximately 7. Some
other equations complement the system (3). The �rst
re�ects constant mass of gas inside a spherical bubble,
whose density is constantly distributed over a volume
(R denotes a bubble's radius),

R3ρg = R3
0ρg0, (4)

and the second one describes adiabatic behavior of gas
inside it,

pgρ
−γg
g = pg0ρ

−γg
g0 , (5)

where γg =
Cp,g

CV,g
. Equation (5) imposes no energy ex-

change between bubbles and surrounding liquid. Oscil-
lations of each bubble are described by the Rayleigh�
Plesset equation [21]:

R
∂2R

∂t2
+

3

2

(
∂R

∂t

)2

− 1

cl

[
R2 ∂

3R

∂t3
+ 6R

∂R

∂t

∂2R

∂t2

+ 2

(
∂R

∂t

)3 ]
=
p′g − p′l
ρl

. (6)

Equation (6) accounts for compressibility of a liquid
[6, 19]. Equations (4)�(6) permit to rearrange the sec-
ond equation from the system (3) in terms of quantities
describing the mixture as a whole: p, ρmix, v. Equa-
tions (3) in the dimensionless quantities (x denotes vector
of the Cartesian coordinates, λ is the characteristic scale
of acoustic perturbations, and cmix is the speed of sound
of in�nitely small magnitude in a bubbly liquid [5]):

vd =
v′

cmix
, pd =

p′

c2mixρmix0
, ρd =

ρ′mix

ρmix0
,

xd =
x

λ
, td =

tcmix

λ
, (7)

1

c2mix

=
(1− α)2

c2l
+
α(1− α)ρl0

γgpg0
, (8)

take the form [20]:

∂v

∂t
+ ∇p = − ((v ·∇)v − ρ∇p) ,

∂p

∂t
+ ∇ · v − α(1− α)R2

0ρ
2
l0c

4
mix

3(γgpg0)2
∂3p

∂t3

= (1− α)c2mix

(
− γl + 1

c2l
ρ∇ · v − c2mix

×α(1− α)ρ2l0(γg + 1)

(γgpg0)2
p∇ · v

)
− v ·∇ρ+ ρ∇ · v,

∂ρ

∂t
+ ∇ · (ρv) = 0. (9)

Starting from Eqs. (9), upper indices by dimensionless
quantities will be omitted. The largest, quadratic terms
are kept in the non-linear right-hand parts of all equa-
tions.

3. Acoustic and non-wave modes

and relative dynamic equations

For motions of in�nitely small magnitudes, the system
(9) takes the form

∂Ψ

∂t
+ LΨ = 0, (10)

where Ψ is a vector of perturbations, Ψ =


vx
vy
vz
p

ρ

, and

L =


0 0 0 ∂

∂x 0

0 0 0 ∂
∂y 0

0 0 0 ∂
∂z 0

∂
∂x (1+D∆) ∂

∂y (1+D∆) ∂
∂z (1+D∆) 0 0

∂
∂x

∂
∂y

∂
∂z 0 0

,

D =
α(1− α)R2

0ρ
2
l0c

2
mix

3(γgpg0)2λ2
(11)

are the linear matrix operator including spatial deriva-
tives and the small parameter responsible for dispersion,
D; ∆ denotes the Laplace operator. Studies of motions
of in�nitely-small amplitudes begin usually with repre-
senting of all perturbations as a sum of planar waves

f(x, t) =

∫
f̃(k, t) exp(− ik · x)dk

=

∫
f̃(k) exp(iωt− ik · x)dk (12)

(f̃(k, t) denotes the Fourier transform of f(x, t),

f̃(k, t) =
1

(2π)3

∫
f(x, t)e ik·xdx,

and k is the wave vector). In all evaluations below only
terms proportional toD0 andD1, are retained. There are
�ve roots of dispersion equation, two �rst being acous-
tic (marked by indices 1 and 2, respectively), the third
dispersion relation describing stationary (or �entropy�)
mode, and the last two zero roots describing the station-
ary vortex motion,

ω1 = − i
√

∆̃
(

1 +D∆̃/2
)
, ω2 = i

√
∆̃
(

1 +D∆̃/2
)
,

ω3 = 0, ω4 = 0, ω5 = 0, (13)

where

∆̃ = −k2x − k2y − k2z ,
√
∆̃ = i

√
k2x + k2y + k2z .

They determine relations of perturbations speci�c for ev-

ery mode (Ψ̃ denotes a vector of Fourier transforms of
perturbations):



1140 P. Wojda, A. Perelomova

Ψ̃1 =



ikx√
∆̃

(
1+D

2 ∆̃
)

iky√
∆̃

(
1+D

2 ∆̃
)

ikz√
∆̃

(
1+D

2 ∆̃
)

1+D∆̃

1


ρ̃1,

Ψ̃2 =



− ikx√
∆̃

(
1+D

2 ∆̃
)

− iky√
∆̃

(
1+D

2 ∆̃
)

− ikz√
∆̃

(
1+D

2 ∆̃
)

1+D∆̃

1


ρ̃2, Ψ̃3 =


0

0

0

0

1

 ρ̃3, (14)

where ρ̃n (n = 1, 2, 3) are the Fourier transforms of per-
turbations in density belonging to corresponding speci�c
mode. The both branches of the vortex mode may be
determined in the following way (they correspond to the
rotational �ow of a �uid of constant pressure and den-
sity):

∇ · v4,5 = 0, p4,5 = 0, ρ4,5 = 0, (15)

where v4, v5 denote two arbitrary independent branches
of the vortex �ow: v4 + v5 = vvort. The both sound
modes and the entropy motion are potential. Equa-
tions (13), (14) may be expanded in series with respect
to powers of D. That signi�cantly simpli�es evaluations.

The modes of a �ow of in�nitely small magnitude
do not interact far from boundaries. The dynamic
equations which govern any mode, may be readily de-
composed from the linearized system (10) by use of links
speci�c for each mode. That may be done by means of
projectors [20]. The projecting operators point the way
for successful decomposing of equations governing every
mode also in a weakly nonlinear �ow. The projection
results to dynamic equations with nonlinear terms
responsible for the modes interaction. Equations (9)
accounting for nonlinear terms, take the form

∂Ψ

∂t
+ LΨ = Ψnl. (16)

Application of the �vortex� projector on the system (16)
cancels all acoustic and entropy terms in the linear part
of the left-side vector, but yields nonlinear source in the
right-hand vector. We will consider among nonlinear
terms represented by Ψnl only acoustic ones. That cor-
responds to intense sound as compared to the non-wave
modes. The vorticity projector in fact applies on three
components of overall velocity. Its part, applying on the
velocity vector, Pvort,v, takes the form

Pvort,v =
1

∆


∂2

∂y2 + ∂2

∂z2 − ∂2

∂x∂y − ∂2

∂x∂z

− ∂2

∂x∂y
∂2

∂x2 + ∂2

∂z2 − ∂2

∂y∂z

− ∂2

∂x∂z − ∂2

∂y∂z
∂2

∂x2 + ∂2

∂y2

. (17)

Application of Pvort,v on the �rst three equations from
the system (9), which represent the momentum equation,
results in the dynamic equation governing velocity of

the vorticity mode

∂vvort

∂t
= Pvort,v

 −(v ·∇)vx + ρ ∂p∂x
−(v ·∇)vy + ρ ∂p∂y
−(v ·∇)vz + ρ∂p∂z


a

. (18)

The right-hand side of Eq. (18) includes, in general,
terms belonging to both acoustic modes. By use of
relation between acoustic pressure and acoustic excess
density, it may be rearranged into the following equation:

∂vvort

∂t
= DPvort,v

(
2∑

n=1

ρn∇∆

2∑
n=1

ρn

)
. (19)

That yields the dynamic equation for the vorticity mode
in the �eld of intense sound, in two equivalent forms,

∂Ω

∂t
= D (∇ρa)× (∇∆ρa) ,

∂vvort

∂t
= DPvort,v (ρa∇∆ρa) , (20)

where Ω is the vorticity of a �ow, Ω = ∇ × vvort, and
ρa = ρ1 + ρ2. Application of the last row of P1 [20]
on Eqs. (9), if only nonlinear terms belonging to the
�rst mode are kept in the nonlinear part, results in the
leading-order equation governing an excess density of the
�rst branch of sound

∂ρ1
∂t
−
√
∆ (1 +D∆/2) ρ1 + [(2ε− 1)ρ1∇ · v1/2

+ v1 ·∇ρ1/2] = 0, (21)

where ε denotes the parameter of nonlinearity,

ε =
(1− α)c2mix(γl + 1)

2c2l

+
c4mixα(1− α)2ρ2l0(γg + 1)

2(γgpg0)2
. (22)

and square root of Laplacian (
√
∆f(r, t)) means integral

operator which corresponds to the Fourier transform of

i
√
k2x + k2y + k2z f̃(k, t). The parameter of nonlinearity,

given by Eq. (22), coincides with that evaluated in [2]. In
the study [2], the expression obtained for incompressible
liquid is completed by the terms following from the non-
linearity in equations di�erent from the pressure-density
relation for the mixture. Unlike, Eq. (22) is immediate
result of decomposition of the total system of conserva-
tion equations describing compressible liquid including
bubbles into speci�c dynamic equations.

3.1. Dynamic equations in the quasi-planar geometry
of a �ow

Until this point, no restriction concerning a type of �ow
geometry was done. In the majority of practical applica-
tions, a weakly divergent acoustic beam is of interest. Let
y designate the nominal axis of the sound beam pointing
in the propagation direction, and let x, z be the coordi-
nates perpendicular to that axis. We will assume that all
acoustic perturbations vary much faster in the direction
of axis OY than in the direction perpendicular to this
axis: k2y � k2x + k2z . It allows to expand the relations for
sound perturbations in the series of powers of the small
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parameter µ = (k2x + k2z)/k2y, which is responsible for a
beam's divergence. Keeping the leading-order terms, one
readily rearranges Eq. (21) into the following form:

∂ρ1
∂t

+
∂ρ1
∂y

+
∆⊥
2

∫
ρ1dy +

D

2

∂3ρ1
∂y3

+ ερ1
∂ρ1
∂y

= 0,

(23)

where ∆⊥ = ∂2

∂x2 + ∂2

∂z2 . This equation is in fact one
of the form of KZ (the non-viscous limit of KZK) equa-
tion with inclusion of dispersion. The dynamic equation
for the vorticity mode in the �eld of intense sound pro-
gressive in the positive direction of axis OY , takes the
leading-order form

∂Ω

∂t
= D (∇ρ1)×

(
∇∂2ρ1
∂y2

)
. (24)

Equation (24) reveals that both nonlinearity and disper-
sion are necessary conditions of acoustic streaming in a
bubbly liquid. The following assumptions will be made
regarding the source: it is de�ned at the plane y = 0 and
is positioned symmetrically with respect to the y-axis.
The system (Eqs. (23), (24)) may be readily rearranged

in the cylindrical geometry with r =
√
µ
√
x2 + z2:

∂ρ1
∂t

+
∂ρ1
∂y

+
µ

2r

∂

∂r

(
r

∫
∂ρ1
∂r

dy

)
+
D

2

∂3ρ1
∂y3

+ ερ1
∂ρ1
∂y

= 0, (25)

∂Ω

∂t
=
√
µD

 cosφ

0

− sinφ

F (ρ1), (26)

where

F (ρ1) = −∂ρ1
∂r

∂3ρ1
∂y3

+
∂ρ1
∂y

∂3ρ1
∂r∂y2

(27)

and φ = arccos
(

z√
x2+z2

)
. The main di�culty in solu-

tion for Ω is establishment of function ρ1, which satis�es
Eq. (25) and has not analytical solutions. We rearrange
Eq. (25) into the following equivalent form:

∂ρ1
∂t

+
∂ρ1
∂y

+

√
µ

2r

∂

∂r
(rg) +

D

2

∂3ρ1
∂y3

+ ερ1
∂ρ1
∂y

= 0,

(28)

∂g

∂y
=
√
µ
∂ρ1
∂r

, (29)

where

g = −√µ
∫ ∞
y

∂ρ1
∂r

dy. (30)

After establishing of the solution ρa, one can �nd vortic-
ity solving equations

∂Ωy
∂t

= 0,
∂Ωr
∂t

= 0,
∂Ωφ
∂t

=
√
µDF (ρa), (31)

where Ωy, Ωr, and Ωφ are y-component, radial compo-
nent and angular components of vorticity, correspond-
ingly. In order to establish the vortex motion, one has to
solve the system of Poisson equations. In the Cartesian
coordinates, that requires

∆vvort = −∇×Ω . (32)

If Ω(t = 0, y, r) = 0, Ω can be expressed in terms of
angular component of vorticity

Ω =

 cosφ

0

− sinφ

Ωφ.

The vortex velocity satis�es the following set of equations
in the cylindrical coordinates:

∂2vy,vort
∂y2

+ µ
1

r

∂

∂r

(
r
∂vy,vort
∂r

)
= −
√
µ

r

∂

∂r
(rΩφ), (33)

∂2vr,vort
∂y2

+ µ
∂

∂r

(
1

r

∂

∂r
(rvr,vort)

)
=
∂Ωφ
∂y

. (34)

The angular component of vortex velocity equals zero.

4. Numerical evaluations

We consider initially unperturbed liquid containing gas
bubbles. All calculations relate to a circular acoustic
transducer at which an excess acoustic density takes the
shape of a Gaussian beam. Solutions are obtained in the
case of the following set of initial and boundary condi-
tions:

ρa(t = 0, y, r) = 0, Ω(t = 0, y, r) = 0,

ρa(t, y = 0, r) = M sin(2πt)e−r
2−δt2 ,

∂ρa
∂r

(t, y, r = 0) = 0,

Ωφ(t, y = 0, r) = 0, Ωφ(t, y, r = 0) = 0,

vy,vort(t, y = 0, r) = 0,
∂vy,vort
∂r

(t, y, r = 0) = 0,

vr,vort(t, y, r = 0) = 0. (35)

The parameter δ is responsible for the deviation of a
beam from strictly periodic: δ = 0 corresponds to a har-
monic at a transducer sound beam. In order to obtain
boundary condition for radial component of velocity at
the axis of a beam, vr,vort(t, y = 0, r), one should es-
tablish a solution of Eq. (33) and substitute it into the
following equality:

∂vr,vort
∂y

−√µ∂vy,vort
∂r

= Ωφ, (36)

which in fact is the de�nition of the angular component of
vorticity. Solutions for excess acoustic density and vortic-
ity, Eqs. (28), (29), (31), have been obtained by means of
a numerical scheme which uses an implicit Runge�Kutta
method, and the second-order central di�erence scheme
in evaluations of spatial derivatives. The method was
adapted specially for a �ow of a bubbly liquid. To estab-
lish a solution of Eqs. (33), (34), the second-order cen-
tral di�erence scheme was used in evaluations of spatial
derivatives along with the bi-conjugate gradient method
(Bi-CG) which has been described in [22].
Bi-CG is one of the Krylov subspace methods which

makes it possible to obtain solutions for matrix equa-
tion Ax = f with asymmetric matrix operator A. In
the context of the problem, equation Ax = f repre-
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sents the discrete Poisson equation in cylindrical coor-
dinates. A denotes the discrete version of the Laplace
operator (in cylindrical coordinates), which is di�erent
in Eqs. (33), (34). Dimension of A equals to number
of nodes, N , which are used in calculations, x consists
of discrete data vector of the longitudinal components
(in Eq. (33)) or the radial components of the vortex ve-
locity (in Eq. (34)), and f denotes the discrete form of
the right side of Eq. (33) and Eq. (34), respectively.
We start from establishing initial values of x (x0) and

two other vectors, x̃0 and f̃ . Further, residues r0 and
r̃0 and vectors p0, p̃0, pk, p̃k are established, which are
compounds of vectors x and x̃0:

r0 = f −Ax0, r̃0 = f̃ −ATx̃0,

p0 = r0, p̃0 = r̃0. (37)

The following actions are repeated until convergence of
the vector xk to the solution x (k is the natural number):

αk =
r̃Tk rk
p̃TkApk

,

xk+1 = xk + αkpk, rk+1 = rk − αkApk,

r̃k+1 = r̃k − αkATp̃k, βk =
r̃Tk+1rk+1

r̃Tk rk
,

pk+1 = rk+1 − βkpk, p̃k+1 = r̃k+1 − βkp̃k. (38)

For discrete Poisson equation, the counter of repeti-
tion k is proportional to the square root of amount of
nodes, N . That means that the procedure of solution
requires O(N3/2) operations. Calculations are �nished
when the norm of residuum rk gets smaller than 10−10.
In fact we arrive at solution of discrete Poisson equation
in cylindrical coordinates with mixed boundary condi-
tions: the Dirichlet boundary conditions and the Neu-
mann boundary conditions for longitudinal and radial
components of the vortex velocity. Solutions of this kind
of problem are not available in any commercial software
which has been developed for the Poisson equation.
In accordance to the system (26), the angular compo-

nent of vorticity is proportional to M2, D, and
√
µ. It

can be concluded from numerical simulations that vor-
ticity achieves maximum at some distance from a trans-
ducer and the axis of a beam. Vorticity decreases far from
transducer because of decrease in the magnitude of the
acoustic density at large distances due to di�raction. The
di�raction parameter µ also in�uences on the formation
of vorticity. The smaller value of this parameter is, the
sound beam is more concentrated near the axis OY , and
it generates maximal vorticity at larger distances from a
transducer. Oscillations of the vorticity and the vortex
velocity generated by pulses are much smaller than that
caused by harmonic at transducer acoustic waves.
For periodic acoustic waves, vorticity constantly in-

creases in time at any point. It tends to some limit level
in the case of aperiodic sound. That re�ects the decrease
with time of magnitude of impulse sound.
The numerical results were obtained for water with

bubbles; they relate to the following values of parame-

Fig. 1. Streamlines for µ = 0.0025, δ = 0 (a, b) and
δ = 0.001 (c, d).

Fig. 2. Streamlines for µ = 0.01, δ = 0 (a, b) and δ =
0.001 (c, d).

ters: α = 0.001, R = 2.5 × 10−4 m, ρl = 1000 kg/m3,
γg = 1.4, pg = 105 Pa, cl = 1500 m/s, λ = 0.00125 m.
The sound speed in a gaseous water cmix equals 374 m/s
(this means that the frequency of acoustic wave is about
300 kHz), the dispersion parameter is D = 0.000095, and
the nonlinearity parameter ε equals 1200.
Figures 1 and 2 show streamlines of the vortex mo-

tion generated by periodic sound and impulses for values
of di�raction parameter µ equal to 0.01 and 0.0025, re-
spectively (δ equals 0 or 0.001). Calculation were made
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for the Mach number M which equals 0.0005. Acoustic
streaming in the both cases, caused by periodic or aperi-
odic sound, reveals some general features. Along with the
turning of stream towards a transducer far from the axis
of a beam, there appear small-scale vortices close to the
axis. The direction of streamlines in these small vortices
is counterclockwise in the upper vertical cross-section of a
�ow. The pictures representing impulse sound, are more
prolongated in the vertical direction. Streamlines at dif-
ferent times di�er by the number of small-scale vortices
in the vicinity of the axis. Their number grows with time,
and the �ow near the axis of a beam recalls a turbulent
�ow.

5. Conclusions

In this study, we consider acoustic streaming caused by
periodic and impulse sound in a compressible liquid in-
cluding gaseous bubbles. Equations (20), which describe
nonlinear generation of the vortex mode in the �eld of in-
tense sound, are instantaneous, and their derivation does
not require averaging over the sound period. Neither vis-
cosity of pure phases, nor heat transfer between bubbles
and surrounding liquid, nor non-uniformity of pressure
and temperature inside a bubble, nor vaporization in the
case of bubbles including vapor, were considered. The
nonlinear generation of the vortex mode is caused exclu-
sively by dispersion. In some sense, dispersion acts like
a Newtonian attenuation: it is a necessary (along with
nonlinearity) condition for generation of the vortex mo-
tion in the �eld of sound. In contrast to a Newtonian
attenuation, pure dispersion in�uences only on the phase
speed of di�erent harmonics of sound, but not on their at-
tenuation. Both nonlinearity and dispersion participate
in a nonlinear transfer of momentum and energy between
sound and non-wave modes, but this transfer is not so ef-
fective as in Newtonian �uids, because it does not impose
irreversible losses of momentum and energy of a �ow as
a whole. This is a reason for the acoustic streaming to
reveal features of the turbulent �ow: formation of a series
of increasing number of small-scale vortices takes place.
That happens also to �ows of a Newtonian �uid, when
nonlinearity is large and attenuation does not longer sta-
bilize a �ow, i.e., in �ows with high Reynolds numbers.
Dispersion in its pure form represents somewhat arti�cial
model: in general, dispersion and attenuation in acous-
tics �ow are connected, like they are not independent in
optics [10]. We do not consider convective nonlinearity
in the left-hand side of dynamic equation of vorticity,
Eq. (24), which is described by the term (v ·∇)Ω . It
is well established that account for this term prevents
enlargement of vorticity with time [23].
Numerical results show impact of non-linearity, disper-

sion and di�raction of acoustic beam on the vortex mo-
tion. The results concern the free half-space with circular
transducer which is situated at the boundary y = 0. In-
clusion of boundaries may essentially change conclusions
and in�uences on the very de�nition of modes which as
a rule refers to a discrete set of wave numbers in depen-

dence of the geometry of a volume and boundary condi-
tions. Preliminary analysis of results has revealed impact
of the ratio of the Mach number and dispersion parameter
on the vorticity mode. If the Mach number of a �ow M
is larger than dispersion D, streamlines may change di-
rection in some domains. Another remarkable conclusion
concerns in�uence of di�raction. The smaller value of the
di�raction parameter is, vorticity achieves maximum at
larger distance from a transducer, and its variations are
noticeable at the smaller distances from the axis OY .
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