
Vol. 125 (2014) ACTA PHYSICA POLONICA A No. 5

Accuracy Improvement of a Photoacoustic

Helmholtz Cell Model

M. Suchenek
∗
and L.J. Opalski

Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland

(Received November 6, 2013; revised version March 6, 2014; in �nal form March 13, 2014)

This paper presents a method for improving accuracy of the frequency response of a photoacoustic Helmholtz
cell model. The method generates simple non-linear corrections to well-established (reference) delay line model of
the cell. The form of the correction functions is obtained from a study of a numerical �tting of the reference model
to the measurement data. A novel integral accuracy measure is formulated to compare �t of cell models to actual
measurements in the neighborhood of the resonance frequency, which is important for measurement applications of
the cell. The two proposed correction functions modify e�ective values of duct parameters. Despite simplicity the
proposed corrections make signi�cant improvement of modeling accuracy, as shown with the integral measure but
also with prediction accuracy of the resonance frequency and the cell quality factor. It is signi�cant that substantial
accuracy gain due to the corrections was con�rmed with measurements of a second (testing) set of photoacoustic
Helmholtz cells with geometrical parameter values which are di�erent from these of the �rst set.
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1. Introduction

Measurement of photoacoustic signal is quite a chal-
lenging task [1, 2], especially in case of small amounts
of substance under test [3, 4], and also for substances
with a very weak absorbing spectrum. For such mea-
surements acoustic response can be extremely small and
furthermore it can be covered with measurement equip-
ment noise and interference from external acoustic sig-
nals. Measurement conditions can improve signi�cantly
if the tested substance can be placed inside the acoustic
cell. Such an arrangement inter alia separates measured
sample from the external optical and acoustic interfer-
ence sources and so it increases signal to noise ratio. Ad-
ditionally, a sample might be excited periodically by the
modulated light source. If the excitation frequency is
equal to the cell resonance frequency � the signal due to
the acoustic response of the sample is emphasized, while
all stray signal components, including noise at frequen-
cies which are distant from the resonance, are suppressed.
That kind of selectivity makes possible extraction of the
response from absorbing material even in the presence of
strong background signals.
For this reason it is important to design acoustic cells

with resonant parameters (i.e. the resonance frequency
and selectivity) which are appropriate for particular mea-
surement needs. Accurate modeling of cells with di�erent
size and shapes [5] is also important, as it enables design
and implementation of the appropriate cell on the �rst
attempt � without costly and time consuming trials of
several physical implementations and subsequent selec-
tion of the most appropriate cell based on measurements.

∗corresponding author; e-mail: M.Suchenek@ise.pw.edu.pl

In the literature di�erent photoacoustic cell designs
can be found [6�9]. Recently cells exhibiting Helmholtz
resonance become more and more popular [10, 11], as
they o�er both low resonant frequencies as well as small
geometrical dimensions.

Fig. 1. A schematic layout of the photoacoustic
Helmholtz resonator.

Figure 1 shows an example design of such a cell � two
cavities (with volumes V 1 and V 2) connected by the duct
with length l and diameter a. The sample is excited by
a modulated light beam in one cavity, while sound waves
are measured in the other cavity by the microphone M .

2. Photoacoustic Helmholtz cell model

The Helmholtz cells for photoacoustic applications can
be modeled by acousto-electrical analogies. The acoustic
response of the light-excited sample is represented as a
periodic current source and each cavity is represented as
a capacitor. The cell models di�er mainly in how they
represent the duct which connects the cavities [12�17].
According to the study of the photoacoustic Helmholtz
resonator models [18] the best agreement between models
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and measurement data can be found for models which
represent the duct with delay line or with lumped RLC
elements as de�ned by Kastle and Sigrist [12].

Fig. 2. Helmholtz resonator model with lumped ele-
ments.

If the cell dimensions are much smaller than the acous-
tic wave length used, the duct should be modeled with
lumped elements, as shown in Fig. 2. The current source
J represents the excitation of the test sample by the mod-
ulated light beam, while capacitors C1 and C2 represent
respectively measurement cavity (in which the test sam-
ple is placed) and the microphone cavity. The duct is
represented by an inductance L and the resistance R.
Each element of the model is best described by formu-

lae proposed by the Kastle and Sigrist [12]:

R =
ρlω[dv + (γ − 1)dt]

πa3
, L =

ρl

πa2
, Ci =

Vi
ρu2

,

where ρ is described as the mass density of the gas, u is
the speed of the sound in free space, a is the diameter of
the duct, l is the length of the duct, Vi, i = 1, 2 are vol-
umes of the measurement and the microphone cavities,
respectively. γ = Cp/Cv is the ratio of the speci�c heats
at constant pressure and volume, dv and dt are thickness
of viscous and thermal boundary layer

dv =

√
2µ

ρω
, dt =

√
2κ

ρωcp
,

µ denotes viscosity of the gas �lling the cell, κ is the heat
conductivity, ω = 2πf , f � modulation frequency.

Fig. 3. Helmholtz resonator model with the transmis-
sion line changed to the T-circuits.

If the cell dimensions are comparable to the acous-
tic wave length used, the duct should be modeled with
a transmission (delay) line. The model can be drawn
as shown in Fig. 3 � if the delay line is replaced by
the T-circuit, consisting of appropriately de�ned three
impedances Z3, Z4, and Z5:

Z3 = Z4 = Zw tanh

(
Γwl

2

)
, Z5 =

Zw

tanh(Γwl)
.

The characteristic impedance Zw and the propagation

constant Γw of this model were described by Benade [19]
and Daniels [20, 21] as

Zw =

√
R+ iωL

G+ iωC
,

Γw =
√

(R+ iωL)(G+ iωC),

and R, G, L, C were described as

R = − ωρ

πa2D2
Fv sin(Θv),

L =
ρ

πa2D2
(1− Fv cos(Θv)),

G = −ωπa
2

ρu2
[(γ − 1)Ft sin(Θt)] ,

C =
πa2

ρu2
[1 + (γ − 1)Ft cos(Θt)] ,

Fx exp(iΘ) =
2J1((−1)0.5rx)

(−1)0.5rxJ0((−1)0.5rx)
,

D2 = (Fv sinΘv)
2
+ (1− Fv cosΘv)

2
,

rv = a

(
ωρ

µ

)0.5

, rt = a
(ωρcp

λ

)0.5
.

Unfortunately, de�nitions of the Helmholtz cell model
parameters, which can be found in the literature, do not
lead to good agreement of cell response predictions and
actual responses [22�24]. We will show that accuracy of
existing cell models can be signi�cantly improved with
simple non-linear correction functions. The accuracy im-
provement will be demonstrated for the delay line based
model.

3. Design and measurement of photoacoustic

Helmholtz cells

Development and veri�cation of the cell model im-
provement technique, to be presented in the next sec-
tions, was possible due to availability of a substantial
number of the Helmholtz cells with di�erent geometrical
parameter values and common mechanical design � as
presented in Fig. 4. Elements of these cells were designed
in such a way that the cells can be easily reassembled by
using components of di�erent sizes. Each element (mi-
crophone, sample cavity, duct connecting cavities) can
be easily replaced for another instance of that element
(possibly with di�erent size).
Having that �exibility we created two sets of cell pa-

rameter values. For the �rst set we used combina-
tions of: the volume of the microphone cavity V 2 =
0.5, 1.0, 1.5, 2.0 cm3 (the measurement cavity was �xed
at V 1 = 2 cm3), the duct length l = 2, 3, 4 cm and the
diameter a = 1, 3 mm. The second parameter set was
formed with a combination of: the volume of the mi-
crophone cavity V 2 = 1.0, 2.0, 3.0, 4.0 cm3 and measure-
ment cavity V 1 = 1.0, 2.0, 3.0, 4.0 cm3, the duct length
l = 1.5, 2.5, 3.5, 4.5 cm and the diameter a = 2, 4 mm.
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Fig. 4. Mechanical construction of photoacoustic
Helmholtz cell.

The �rst set was used to obtain the best form of cor-
rection functions for the delay line based model and the
second one � to evaluate the proposed model modi�ca-
tions.
All mechanical components were made of brass in or-

der to ensure appropriate sti�ness of the whole cell and
eliminate vibrations. Prior to measurements the cell was
placed in the holder, as shown in Fig. 5.

Fig. 5. Mechanical construction of photoacoustic
Helmholtz cell.

The step-by�step method [25] was used to obtain fre-
quency responses of the cells in the frequency range
200 Hz to 4 kHz. Thus the sample cell was stimulated by
a light beam from a LED source, modulated at one fre-
quency at a time. The photoacoustic signal was collected
by a capacitive microphone. Electric signal was ampli-
�ed 100 times with a shielded preampli�er before it was
digitally recorded. Measured signal was relatively low,
and so required an additional averaging. Steady-state
signal amplitude at resonance frequency was in order of
few millivolts after about 1000 times averaging.

4. Accuracy of the reference model

for Helmholtz cell models

Before any discussion of model accuracy improvement
it is necessary to understand what accuracy means for
a particular application of the model, and to formulate
the model accuracy measures. For Helmholtz cells under
scrutiny the most interesting center parts of measured
and predicted frequency responses can have the form as
shown in Fig. 6.

Fig. 6. Frequency response from photoacoustic
Helmholtz cell compared with model with lumped
elements and transmission line. For the cell with
sample volume 4 cm3, microphone 2 cm3, duct length
45 mm and diameter 2 mm.

For photoacoustic applications it is reasonable to con-
sider distance between the model predicted response sig-
nal Um(f,p) and the actual measurement Ud(f,p) for
the sinusoidal excitation of the frequency f in a close
neighborhood of the resonance frequency f0 (p denotes
a vector of designable cell parameters, such as volumes
of cavities, length and diameter of the duct). In this
work it was assumed that the endpoints f1 and f2 of the
frequency range of interest are the frequencies at which
the amplitude of the response signal drops 3 dB from
the maximum amplitude value. Subsequently the qual-
ity factor of the cell was de�ned as Q = f0/(f2 − f1) �
by analogy to the widespread de�nition of the Q-factor
for RLC tanks.

The important point of our approach is that we do not
use direct comparison of the resonant frequency f0 and
the Q-factor of a particular cell and its model to assess
quality of a model. Instead we propose using the follow-
ing integral model accuracy (IMA) measure:

δ(p) =
1

f2 − f1

∫ f2

f1

|Um(f,p)− Ud(f,p)| df.

The frequency domain response signal Um(f,p) of cells
used in our study was modeled with the circuit shown
in Fig. 3. In the actual calculation of the IMA measure
the resonance frequency f0 and frequencies f1 and f2
were determined by the spline approximation of cell re-
sponses, and the value of the integral accuracy measure
was calculated by the trapezoidal quadrature.

At the �rst stage of our model accuracy improvement
procedure we made a numerical minimization of the IMA
measures δ(i)(p), i = 1, . . . , N formulated separately for
each of N = 24 cells from the �rst set. That way three
components of the p vector represented the duct length l
and diameter a, the volume of cavity V 2. Let us denote

optimum design parameters with p
(i)
m , i = 1, . . . , N :

p(i)
m = min

p
δ(i)(p).
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In our case the vector p
(i)
m contains 3 optimum model

parameter values, referred to later as lm, am, V 2m. Ge-
ometrical dimensions of the cell were used as a starting
point of the iterative numerical minimization algorithm
fmincon of the MATLAB optimization toolbox [26]. For
each optimum vector we recorded corresponding value of

the IMA measure: δ
(i)
m ≡ δ(p

(i)
m ) to control numerical

quality of the best �t and so to detect possible failures of
the optimization based �tting.

Fig. 7. Disagreement between models, model numeri-
cal �tted and measured data as expressed by (a) res-
onance frequency, (b) quality factor. Fmes, Qmes
� resonance frequency and quality factor calculated
from measurement data; Fmod, Qmod � resonance fre-
quency and quality factor calculated from the model.

A useful side-e�ect of IMA calculations was calcula-
tion of the resonant frequency f0 and the quality fac-
tor Q for each cell model. That way it was possible to
verify not only optimization-based improvement of the
IMA measure, but also more meaningful features of the
model, i.e. the resonant frequency f0 and the quality fac-
tor Q. For the �rst set of cells it turned out that the av-
erage relative disagreement between the �tted model and
measurement of the Q-factor was only 8.75% and 0.83%
for f0. Responses of three cells turned out to be �tted
poorly, as can be also seen in Fig. 7. Thorough check of
measurement procedure for the three cells con�rmed that
such cells, with large volume of channel (relative to vol-
ume V 2), are indeed modeled so inaccurately that �tting
is not able to improve accuracy of f0 and Q predictions
much. If the three data points are omitted, the average
error of the Q-factor is reduced to impressive 0.35% and
the error of resonant frequency to 0.1%.
If the original, i.e. geometric values of cell parameters,

were used with the same model and the same cell param-
eters the average relative error for the Q-factor was as
large as 35.5% and for f0 it was 5.37%.
If it was possible to determine values: lm, am, V 2m for

each cell instance without numerical optimization, but
only via some algebraic transformations of the geometri-
cal parameters of the cell p = [l, a, V 2] � the accuracy
predictions of the two important parameters (f0, Q) of a
photoacoustic cell could be much improved.
We cannot hope to formulate such an ideal transfor-

mation of p → pm which would be exact for all N pairs

of vectors p(i); p
(i)
m . Instead we will show that it was

possible to construct a simple algebraic transformation
of the geometrical parameters into the model parameters

which retains quite much of accuracy gain of the ideal
transformation.
In order to reduce the complexity of the new model,

we were looking for a minimum subset of the designable
parameters which would give substantial improvement of
the modeling accuracy. It was found that the biggest in-
�uence has the duct size: diameter a and length l. Min-
imization of IMA measures with respect to (w.r.t.) only
two of these parameters for the �rst set of cells resulted
in decrease of the average error of the Q-factor to 13.8%
and for the resonant frequency f0 to 1.15%. Removing
again the three worst �tted data points, resulted in de-
crease of the average error of the Q-factor to 0.31% and
resonant frequency to 0.62%. Further attempts to reduce
the number of parameters, e.g. to the diameter or only
to the duct length, did not result in a signi�cant reduc-
tion of the modeling error. Similar experiments for the
second set of cells con�rmed the largest in�uence of the
duct size upon modeling accuracy of single cells.

5. Correction function for the model

with the transmission line

In the next step of our model improvement method we
were trying to �nd two functions which would map the
physical dimensions of the duct l and a to values close to
these obtained numerically, i.e. lm and am. Finding cor-
rect mappings were done in two sub-steps. First, simple
parameterized functions were discovered, and then values
of the parameters were determined, good for the whole
population of cells from the �rst set. After that quality of
the mapping functions was tested using an independent
(second) set of (testing) cells.
To discover functional form of the mappings we used

results of �tting model responses to measurements for 24
cells of the �rst set, in fact the 24 pairs of values: lm,
and am which correspond to physical duct sizes of the
24 cell instances, i.e. length l, diameter a. The relations
between the geometric dimensions and corresponding nu-
merically �tted values of the duct dimensions are shown
in Fig. 8.

Fig. 8. Relations between physical duct dimensions
and obtained numerical values duct (a) diameter,
(b) length.

From the �gures we can see that better agreement be-
tween model and measured data could be obtained if the
dimension of the duct used for the model calculations was
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smaller than the geometric dimension of the correspond-
ing cell. This remark seems to be true for all dimensions
of the duct in the model.
We started our quest for good mappings, l to lm,

and a to am, from linear functions, to discover that
modeling accuracy could be slightly improved. Much
better results were obtained with nonlinear functions.
Many trials were made with functions involving not only
the duct length and diameter, but also volumes of each
cavities and the duct and their inverses. The following
functions were �nally selected � as a compromise
between simplicity and accuracy improvement

lp =
l

c1 + c2a
, ap =

a

c3 + c4a
,

where lp approximates lm and ap approximates am
values. For clarity let us add that the four constants
c1, . . . , c4, which appear in the last formulae, were
obtained by optimization-based tuning. The tuning
was set up as minimization of the sum of IMA values
for all 24 cell models considered in the �rst set of cell
parameters w.r.t. the four coe�cient values. Resulting
mapping were found as follows:

lp =
l

0.861987 + a0.304575
,

ap =
a

0.973093 + a0.141525
.

To validate corrected model, i.e. the delay line based
cell model for which dimensions of the duct were calcu-
lated by the transformation functions, the second (test-
ing) set of cells was used. Predicted Q and f0 values
for 128 instances of the Helmholtz cell of the second set,
and corresponding predictions of the model are shown
in Fig. 9.

Fig. 9. Disagreement between the original model,
model with numerically �tted coe�cients, model with
correction function and measured data as represented
by (a) resonance frequency, (b) quality. Fmes, Qmes
� resonance frequency and quality factor calculated
from measurement data; Fmod, Qmod � resonance fre-
quency and quality factor calculated from model.

It is seen that the proposed simple nonlinear correction
functions, which were developed for one set of cells, en-
abled signi�cant improvement in the quality of the mod-
eling also for another set of cells (the model without cor-
rection is shown with red asterisks while the model with
the proposed two non-linear correction functions is shown
with blue circles). Figure 10 demonstrates the accuracy

improvement perhaps more vividly � showing correla-
tions between measurements and model predictions. For
the ideal model the markers should lay along a line in-
clined at 45◦.

Fig. 10. Correlation between �tted and measured val-
ues of (a) the resonant frequency f0, (b) the Q-factor.
The black line denotes the ideal correlation, while the
blue lines ±10% relative di�erence of the corresponding
values.

For the majority of measurement data points of the
second set, the model with the proposed correction pro-
vides a better prediction of the resonant frequency, and
quality factor than the correction-less model. The aver-
age error of the quality factor Q was 10.9% as compared
to 35.5% for the reference model. For the resonant fre-
quency f0 the average error is 2.17% while for the model
without correction 5.37%. These results should be con-
sidered good, if we realize that the model allows for a
good prediction accuracy of main photoacoustic cell pa-
rameters in a wide range of resonance frequency and qual-
ity factor values, and that properties of the second (test-
ing) set were signi�cantly di�erent from these of the �rst
set. The two sets of cells did not have a common subset
of cell parameter values. Additionally, the volume V 1 of
the cells in the second set was variable, while it was �xed
for the cells of the �rst set.
Since the coe�cients values were obtained by �tting

the model to the speci�c measurement data obtained
from available cells, for cells with signi�cantly di�erent
dimensions or layout further recalibration of the model
and recalculation of the coe�cients might be needed.
Since the correction functions depend only on four nu-
meric coe�cients � full recalibration could be possible
with only four cell measurements � if the measurement
inaccuracy and cell manufacturing inaccuracy could be
neglected. If these inaccuracies were signi�cant, a regres-
sion type of the recalibration would be necessary, with
increase in the number of cells required to improve out-
come of the recalibration process.

6. Conclusions

This paper presents a method for improving the ac-
curacy of the photoacoustic Helmholtz cell model with
transmission line. The improvement is based on intro-
duction of additional correction functions which relate
geometrical parameters of the cell with the model input
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parameters. The form of the correction functions was ob-
tained from a study of a numerical �tting of a reference
model to the measurement data for the �rst set of 24 cells
with di�erent sizes. Four parameters of the correction
function were determined by �tting the corrected model
to responses of all 24 cells at the same time. Subsequently
the correction functions were veri�ed with another set of
128 cells. It turned out that the signi�cant improvement
was achieved by introducing two simple nonlinear correc-
tion functions of the duct size, each function is dependent
on only two coe�cients.
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