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Transversely Inhomogeneous Nonlinear Surface Ultrasonic

Monopulses in Solid Film�Substrate System
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Excitation of nonlinear acoustic monopulses, or baseband waves, is theoretically analyzed. The monopulses
have a wide spectrum up till the gigahertz range ≤ 1 GHz. The propagation of waves is along the interface between
a solid �lm and a solid substrate. A quadratic elastic nonlinearity in both contacting media of the system is taken
into account. The nonlinear dynamics of waves depends essentially on the thickness of the �lm. The transverse
inhomogeneity of the wave pro�le in the interface plane and the wave di�raction are taken into account, too. The
baseband waves are not true solitons and manifest as single shock-like pulses in the case of an excitation from
initial long rectangular pulses. The transverse inhomogeneity a�ects the dynamics of the shocks, and there is a
possibility to focus the nonlinear monopulses.
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1. Introduction

Last years, research of nonlinear wave phenomena in
bounded solids has been of great interest [1�12]. Non-
linear wave e�ects in structures, which include thin solid
�lms, are perspective for experimental observations due
to a possibility to control linear and nonlinear wave prop-
erties. In this article the nonlinear surface acoustic waves
in bounded solids have been investigated. This nonlinear
wave phenomenon has applications in material research,
microelectronics, sonochemistry, and signal processing.
The surface acoustic waves (SAW) possess attracting

properties for observing nonlinear e�ects in the gigahertz
range. The integral power levels, which are necessary for
a manifestation of nonlinearity, are low. The combination
of materials of the �lm and the substrate makes possible
to control both the wave dispersion and the nonlinear-
ity. It is possible to measure directly the magnitudes of
the components of the velocity of SAW by acoustooptic
methods.
Nonlinear SAW propagation in the layered solid sys-

tems was considered in many papers [3�12]. The most
results of simulations were obtained within an approxi-
mation of moderate nonlinearity. In this case the wave
was presented as a superposition of partial harmonics
with slowly varying amplitudes. The transverse pro�les
of partial harmonics changed weakly, compared with the
linear case. The baseband pulses, or monopulses, can
be excited experimentally [8�10], but they are not true
solitons, because they do not preserve their shapes af-
ter collisions [6, 10]. The properties of nonlinear surface
waves depend essentially on the combination of materi-
als, the thicknesses of the �lms, and the methods of initial
excitation.
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Below there is investigated the propagation of moder-
ately nonlinear monopulses of SAW in the system solid
thin �lm�substrate. The monopulses possess very wide
spectrum that reach the gigahertz range ≤ 1 GHz. The
transverse inhomogeneity in the plane of the �lm is taken
into account, which leads to the wave di�raction. When
the exciting force is monopulse-like, then the baseband
nonlinear wave occurs, so the evolution of almost rectan-
gular initial pulses is considered. It has been shown that
true baseband solitons are absent in such a system.

The nonlinear waves are rather the single shocks. Un-
der certain levels of initial intensities the nonlinearity
ceases to be moderate. From the initial pulse of arbitrary
duration only a single shock can be created. The trans-
verse inhomogeneity in�uences essentially on the dynam-
ics of nonlinear monopulses. It is possible to focus the
nonlinear pulses and to observe the shocks from the initial
pulses of small amplitudes. The properties of nonlinear
waves depend on the thicknesses of the �lms. Namely,
when the thickness of the �lm changes several times,
from 0.1�0.2 µm to 0.5�1 µm, the dynamics of the non-
linear pulse propagation can be changed qualitatively. In
the case of thicker �lms the wave dispersion dominates,
whereas in the thinner ones the nonlinearity can domi-
nate.

2. Basic equations

The surface acoustic wave propagation in the system
a thin solid �lm�solid substrate is under investigation.
Isotropic contacting media are considered without slip-
ping, i.e. the tight contact occurs between the media.
Usually, the Lagrangian coordinate frame is used within
the solid media [1, 3, 11�13]. The dynamic equation,
i.e. the nonlinear elasticity theory one, for the mechan-
ical displacement vector u in solids has the next form
[1, 12, 13]:

ρ0
∂2ui
∂t2

=
∂σij
∂xj

, σij = σL
ij + σNL

ij , (1)
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where ρ0 is the unperturbed density of a solid and σij
is the Piola�Kirchho� tensor. For an isotropic solid the
expression of σij is [1, 2]:

σij = ρ0(s
2
l − 2s2t )divuδij + 2ρ0s

2
tuij

+ (ρ0s
2
t +A/4)

(
∂ui
∂xl

∂uj
∂xl

+
∂ui
∂xl

∂ul
∂xj

+
∂ul
∂xi

∂ul
∂xj

)
+B

∂uj
∂xi

divu+
[
ρ0(s

2
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] ∂ui
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divu

+ (A/4)
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∂ul
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+

{
C(divu)2 +

[
ρ0(s

2
l − 2s2t )/2
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]( ∂ul

∂xm

)2

+ (B/2)
∂ul
∂xm

∂um
∂xl

}
δij . (2)

The quadratic nonlinear terms are taken into account
here. The coe�cients in nonlinear terms are combina-
tions of both material nonlinear modules (A,B,C) and
the linear ones due to the geometric nonlinearity [1, 2].
Here sl,t are longitudinal and transverse acoustic veloc-
ities; ui are the Cartesian components of the mechanic
displacement. The results of the simulation presented be-
low are of qualitative character and do not depend essen-
tially on the values of nonlinear modules. It is assumed
only that the magnitudes of nonlinear modules are com-
parable in the �lm and in the substrate. The wave dis-
sipation due to viscosity, proportional to the square of
frequency, is also taken into account, which is not pre-
sented in Eq. (1).
The ordinary boundary conditions at the interface

�lm�substrate are used [2]; namely, the components of
displacement vector ui and the normal components of
the elastic force σijnj are the same, where n = (1, 0, 0)
is the normal vector to the unperturbed interface. The
geometry of the system under consideration is described
below. The axis OZ is directed horizontally along the
wave propagation in the interface plane, OX one is di-
rected vertically upwards, see Fig. 1a. The thickness of
the �lm (−h < x < 0) is h = const. The solid sub-
strate occupies the space x < −h. The surface x = 0 is
free. In this system the linear SAW can propagate along
OZ axis with displacement components u = (ux, 0, uz).
The linear dispersion equation for the sound waves has
been obtained from subjecting the partial solutions of the
linearized dynamic Eq. (1) in each region to the elastic
boundary conditions.
The dispersion curve for the lowest acoustic surface

mode is presented in Fig. 1b. The contact of the
Si(Ge)O2 �lm with Si substrate is considered. The
following parameters are used: h = 0.25 µm, ct =
2.5 × 105 cm/s, cl = 4.0 × 105 cm/s, ρ1 = 3.0 g/cm3

(Si(Ge)O2); st = 5.0 × 105 cm/s, sl = 8.4 × 105 cm/s,
ρ2 = 2.33 g/cm3 (Si), where cl,t, sl,t are longitudinal
and transverse bulk velocities in the �lm and the sub-
strate, respectively; ρ1,2 are the mass densities. A crys-
talline anisotropy in Si is neglected here. These waves
possess an essential dispersion [2]. One can see that the
wave dispersion in the frequency ranges ω < ωcrit and

Fig. 1. Part (a) is the geometry of the problem. The
�lm is at −h < x < 0, the substrate is at x < −h. The
free surface is at x = 0. Part (b) is the linear wave
dispersion for SAW in the layered solid system �lm�
substrate where ωcrit = 2.62× 1010 s−1 for used param-
eters of Si(Ge)O2 �lm�Si substrate. Part (c) is the cor-
responding dependences of the phase velocity (curve 1)
and the group (curve 2) one on the frequency. The
thickness of the �lm is h = 0.25 µm. Part (d) is the
focusing of SAW in the surface plane ZOY by means of
the curvilinear antenna.

ω > ωcrit di�ers from each other. The value of ωcrit

is ωcrit = 2.62 × 1010 s−1 for the used parameters of
Si(Ge)O2 �lm�Si substrate. Because ωcrit depends on
the thickness of the �lm, the pulse dynamics is di�er-
ent for the structures with di�erent thicknesses of the
�lm. Despite the presence of the wave dispersion and
nonlinearity, the SAW monopulses do not behave as true
solitons, as demonstrated below.

3. Baseband nonlinear waves

The elastic nonlinearity is assumed as moderate. This
gives a possibility to use the spectral method for a con-
sideration of the baseband wave dynamics. It means that
the localized nonlinear wave can be presented as the set of
harmonics with slowly varying amplitudes Aj(z, y), but
the transverse pro�les f j(x) of the harmonics are almost
the same as in the linear case [6�8]:

v ≡ ∂u

∂t
=
ct
2

∑
j

Aj(z, y)f j(x)e
iωjη + c.c.+ δv, (3)

where ωj = (2π/T )j (j = 1, . . . , N), η = t − z/v0
is the �running time� in the moving coordinate frame,
v0 = (∂ω/∂k)|k=0. The value T is the temporal do-
main where the dynamics of localized nonlinear pulse
occurs. With respect to the variable η the periodical
boundary conditions are applied. The excitation takes
place at z = 0. The additional term δv can be obtained
analogously to the theory of the excitation of electro-
magnetic waveguides, namely, by means of imaginative
elimination of nonlinearity from the thin layer of the
waveguide [14, 15]. In Fig. 1a, this layer is marked by
the dot lines. The elimination should be compensated
by additional tensions δσ13, δσ33, and, respectively, the
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additional parts of the velocity of the medium δvx, δvz
within this layer. Because the layer is thin, the dominat-
ing derivative is ∂/∂z. It is possible to write down

δσ13 ≈ −σNL
13 ,

where

δσ13 = ρs2t

[
∂(δux)

∂z
+
∂(δuz)

∂x

]
≈ ρs2t

∂(δux)

∂z
. (4a)

This makes possible to calculate δvx:

∂(δux)

∂z
≈ − 1

v0

∂(δux)

∂η
≈ −σ

NL
13

ρs2t
,

δvx ≡
∂(δux)

∂t
≈ ∂(δux)

∂η
≈ v0

σNL
13

ρs2t
. (4b)

As the result, the expression for the additional parts
of the velocity is δvx = v0σ

NL
13 /ρs

2
t , and analogously

δvz = v0σ
NL
33 /ρs

2
l . When the nonlinearity is moderate,

the additional term is small for the dominating compo-
nent of the velocity vx but gives an essential correction
to the small component vz.
To derive the equations for the slowly varying am-

plitudes Aj(z, y), the reciprocity relation has been used
[13, 16]:
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,
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(1)
j

∂t
=
ct
2
Aj(z, y)f j(x)e

iωjη,

∂u
(2)∗

j

∂t
= ctf

∗
j (x)e

− iωjη, (5)

where u
(1)
j are the positive frequency component of the

mechanical displacement of the nonlinear wave of the fre-

quency ωj ; u
(2)∗

j are the negative frequency component

of the monochromatic linear wave; cijkl = ρ1c
2
t (δikδjl +

δilδjk) + ρ1(c
2
l − 2c2t )δijδkl for the isotropic �lm (analo-

gously for the substrate), σnlij are the components of the
nonlinear part of the Piola�Kirchho� tensor [1, 3, 15].
The normalization of the transverse pro�les f j has been
chosen to the unity value of the �ux of the energy of the
mode. The integration of Eq. (5) over the transverse co-
ordinate x results in the orthogonality relations for the
linear eigenmodes and makes possible to derive the cou-
pled equations for the slowly varying amplitudes in the
nonlinear case.
Let us note that the nonlinearity in the boundary con-

ditions matches with the volume nonlinearity and cannot
be considered separately. Earlier there was an attempt
to reduce Eq. (1) to the set of two weakly coupled equa-
tions for slowly varying amplitudes that depend on the
running time η and the longitudinal coordinate z [17].

But it seems incorrect for the surface Rayleigh-like
waves, because the di�erent components of the mechani-
cal displacement of the surface wave are strongly coupled
due to the boundary conditions even in the linear case.
Moreover, in [17] the used equations did not have any
correct correspondence to the linear case. The experi-
mental results [18] were devoted to the nonlinear periodic
waves with the essential dispersion, whose dynamics dif-
fers from the pulse dynamics. Also the nonlinear modules
for the �lm and the substrate used in [18] were essentially
di�erent, in a contrast to the case considered here.

The wave dynamics does not depend on the choice of
the parameter T for the enough large values of T and
for a number of used harmonics more than 200. Namely,
several simulations with the same parameters have been
realized with di�erent values of T , and the results have
been independent of the value of T . An alternative equiv-
alent approach to derive the equations for amplitudes of
harmonics is based on the variational principle with av-
eraged Hamiltonian or Lagrangian function of the elastic
�eld [2, 3, 10].

The propagation of the baseband nonlinear waves is de-
scribed by a set of coupled ordinary di�erential equations
for harmonics [6], and the total number of harmonics is
of about 256�4096. The splitting with respect to physical
factors has been applied. Namely, at the �rst half-step
the nonlinearity, the wave dispersion, and the dissipation
has been taken into account. At the second half-step the
wave di�raction has been considered. In the simulations
the parabolic approximation have been applied

∂Aj
∂z

= − i(kj − jk1)Aj − ΓjAj

+ iωj

(∑
m<j

Pm,jAmAj−m

+ 2
∑
m>0

Pm,m+jAm+jA
∗
m

)
� the �rst half-step,

∂Aj
∂z

= − i

2kj

∂2Aj
∂y2

� the second half-step. (6)

Here kj ≡ k(ωj) is determined from linear dispersion
equation; Γj = j2Γ1 is the dissipation of the j-th
harmonic. In simulations it has been taken Γ (ω =
109 s−1) = 0.2 cm−1. The coe�cients Pm,j are expressed
through the linear and nonlinear modules of two con-
tacting media and, due to their complexity, they are not
presented here. These coe�cients have been calculated
numerically. Using the reciprocity relation, the nonlinear
boundary conditions for the stresses at the interfaces are
taken into account simultaneously, and there is no ne-
cessity to separate the nonlinearity in the volume equa-
tions and in the boundary conditions here, in a distinc-
tion to [11].

The linear dispersion of the considered waves corre-
sponds to so-called Benjamin�Ono (B�O) equation. In
the case of the model described by the solitonic B�O
equation all the coe�cients Pm,j are equal [19].
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Fig. 2. The dynamics of baseband pulses in Si(Ge)O2�Si structure. Part (a) is for the extreme value of the input pulse
vx0/ct = −0.0025; (b) vx0/ct = −0.005; (c) vx0/ct = −0.01; (d) vx0/ct = −0.012; (e) vx0/ct = −0.012, but the narrower
initial pulse; (f) vx0/ct = −0.012, but the wider initial pulse. The thickness of the �lm is h = 0.25 µm.
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In our case they increase with frequency growth. Phys-
ically it is due to the concentration of the acoustic energy
near the surface when the propagating pulse becomes
shorter. The numerical simulations have shown that

the baseband nonlinear waves in this system with above-
-pointed nonlinearity di�er from the B�O solitons. The
used nonlinear modules are A = B = −3×1012 dyn/cm2,
C = −5× 1012 dyn/cm2 [1, 2].

Fig. 3. The dynamics of baseband pulses in Si(Ge)O2�Si structure. In part (a) the thickness of the �lm is h = 0.1 µm,
vx0/ct = −0.009; (b) the thickness of the �lm is h = 0.5 µm, vx0/ct = −0.012; (c) the thickness of the �lm is h = 0.5 µm,
vx0/ct = −0.015.

In the simulations the generation of the nonlinear base-
band waves from an initial almost rectangular pulse at
z = 0 has been investigated, see Figs. 2, 3. The depen-
dences of the vertical component of the velocity of the free
surface of the �lm vx(x = 0) are presented on the running
time η. The �rst parts are the initial distributions z = 0
of the vertical component of velocity at the free surface
of the �lm vx(x = 0, η, y)/ct in the plane (η, y), the sec-
ond parts are the distributions of vx/ct at the maximum
compression of the pulse; the third parts are the initial
(solid line), intermediate (dash line), and �nal (dot line)
distributions of vx/ct in the center y = Ly/2. The �nal
distributions in the third part correspond to the maxi-
mum compression of the pulse, as in the second part. The
velocity of the elastic medium is normalized to the trans-
verse sound bulk velocity of the �lm ct = 2.5×105 cm/s.
In all �gures vx0 is the extreme value of the input pulse
at z = 0.

Let us note that there exists a self-similar solution of
Eqs. (6), which describes a traveling nonlinear wave with
the constant velocity of propagation [6, 10]. But the
set of equations for the nonlinear SAW is not fully in-
tegrable, and it is impossible to conclude that such a
solitary traveling wave must be excited from each initial
data of enough large value [19]. It is impossible also to
separate the solitonic and non-solitonic parts of the non-
linear wave there, because of absence of true solitons.

The nonlinear baseband wave possesses the certain
asymmetry under its propagation. The polarity of the
nonlinear pulse depends on the signs of the quadratic
nonlinear modules. A stable true solitary wave is not
formed during the evolution of input long rectangular
pulses, as our simulations have been demonstrated. The
nonlinear baseband wave manifests rather like a shock-
-like pulse. From a long initial rectangular pulse or a
sequence of two neighboring pulses only a single shock-
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-like pulse is formed. When the input rectangular pulse
is taken enough long (Fig. 2c,d,f), it is possible to get the
nonlinear pulses of large peak values, where an approx-
imation of moderate nonlinearity ceases to be valid. To
generate the nonlinear pulse with the duration ≤ 3 ns it
is necessary to use the structures with the thickness of
the �lm h < 0.5 µm.
The results of the pulse dynamics with thicknesses of

the �lm h = 0.1 µm and h = 0.5 µm are given in Fig. 3.
When the thickness of the �lm is smaller h ≈ 0.1 µm, the
wave dispersion is lower and the single shock is formed
at smaller distances. In the structures with thicker �lms
h ≥ 0.5 µm the wave dispersion can dominate and pre-
vents the formation of shocks. This di�erence can be ex-
plained in the following manner. In the structures with
the thinner �lms h ≤ 0.25 µm the surface wave pene-
trates deeply into the substrate. In the structures with
thicker �lms h ≥ 0.5 µm the surface wave is localized
near the interface of the �lm�substrate.
The frequency range of the pulse under maximum com-

pression (at the distances z ≈ 5�10 cm) lies within the

interval 0 < ω ≤ 5 × 109 s−1. Therefore, the in�uence
of the wave di�raction is important, when the transverse
half-width of the initial pulse is ≤ 0.2 cm, see Fig. 2e.

The similar dynamics of the nonlinear wave excitation
has been obtained for di�erent values of nonlinear param-
eters A,B,C, because the values of nonlinear coe�cients
Pm,j are not constant for any set of nonlinear parameters
of the system �lm�substrate. Let us note that in the case
of the fully integrable Benjamin�Ono or the Korteveg�de
Vries solitonic systems it is possible to excite several soli-
tons from a long initial pulse [17].

4. The focused monopulses

It is possible to focus the pulses, when the arc-like
antenna is used for the excitation of initial rectangular
acoustic waves, see Fig. 1d. Earlier the focusing of non-
linear waves was investigated for the envelope nonlinear
pulses [20].

Fig. 4. The dynamics of the focused baseband pulses in Si(Ge)O2�Si structure. Part (a) is for vx0/ct = −0.0025; (b) is
for vx0/ct = −0.0045, (c) is for vx0/ct = −0.005. The thickness of the �lm is h = 0.25 µm.

It is used the same method for the baseband waves.
In the plane z = 0 the corresponding phase shift has

been calculated for all harmonics Aj , j = 1, 2, . . . The
curvilinear shape of the initial pulse in the plane (η, y) at



1124 M. Tecpoyotl-Torres et al.

z = 0 is due to the delay of propagation of the wave from
the central part of the antenna, see Fig. 1d. For all the
cases the focusing distance is R = 7.5 cm. The results of
simulations are given in Figs. 4, 5. The positions of three

parts are the same as for Figs. 2, 3. In Fig. 4 it is seen that
the focusing of monopulses leads to essential increase of
the nonlinear shock waves. In Fig. 4c and Fig. 5, at near
the focus point the nonlinearity is no longer moderate.

Fig. 5. The dynamics of the focused baseband pulses in Si(Ge)O2�Si structure. Part (a) is for the thickness of the �lm
h = 0.1 µm, vx0/ct = −0.004; (b) is for the thickness of the �lm h = 0.5 µm, vx0/ct = −0.005, (c) is for the thickness
of the �lm h = 0.5 µm, vx0/ct = −0.007.

One can see that the nonlinear surface waves can be
focused easier in the structures with the thinner �lms
h < 0.25 µm, compare Fig. 4c and Fig. 5a. In that
turn, the structures with the thicker �lms h ≥ 0.5 µm
possess an essential wave dispersion, which can prevent
the creation of the nonlinear focus, as our simulations
have shown.

5. Conclusions

The excitation of nonlinear acoustic monopulses, or
baseband waves, in the gigahertz range is theoreti-
cally analyzed. The monopulses have a wide spectrum
≤ 1 GHz. Simulations of the baseband nonlinear wave
dynamics in the layered system, which includes a �lm of
a thickness h = 0.1�1 µm and a half-in�nite substrate,
demonstrate a formation of shock-like pulses of surface
acoustic waves. The dynamics of the baseband pulses is

non-solitonic in these structures. It seems that a non-
-soliton behavior is a general feature of the monopulse
waves in half-bounded systems. The transverse inhomo-
geneity in the plane of the �lm and the wave di�raction
a�ect the dynamics of monopulses. It is possible to focus
the monopulses and to produce strong shock waves where
the nonlinearity ceases to be moderate.

The dynamics of the pulses of surface acoustic waves
depends on the thickness of the �lm. Namely, when the
thickness of the �lm is h ≤ 0.25 µm, the nonlinearity
dominates over the wave dispersion. In the case of the
thicker �lms h ≥ 0.5 µm the wave dispersion can domi-
nate. Therefore, the structures with the thicker �lms can
be useful for observation of both true baseband solitons
and the envelope ones.

The formation of short ≈ 1 ns acoustic shock-like
pulses is important for the signal processing and the
acoustic treatment of interfaces in microelectronics.
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