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In this paper, the (G′/G, 1/G) and (1/G′)-expansion methods with the aid of Maple are used to obtain new

exact traveling wave solutions of the Boussinesq equation and the system of variant Boussinesq equations. The
travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions, and the rational
functions. It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave
equations in mathematical physics and engineering.
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1. Introduction

Finding exact solutions of nonlinear evolution equa-
tions (NEEs) is a very important part of nonlinear phys-
ical phenomena. It is a fact that exact solutions pro-
vide much physical information and help one to under-
stand the mechanism that governs some physical mod-
els, such as plasma physics, optical �bers, biology, solid
state physics, chemical physics, and so on. In recent
years, di�erent methods for �nding exact solutions of
nonlinear evolution equations have been proposed, de-
veloped and extended. These are the Jacobi ellip-
tic function method [1], the Hirota bilinear tranforma-
tion [2], the Weierstrass function method [3], the Dar-
boux and Backlund transform [4], the Wronskian tech-
nique [5], homotopy perturbation method [6], the theta
function method [7], symmetry method [8, 9], the ho-
mogeneous balance method [10, 11], sine/cosine method
[12�14], F -expansion method [15], exp function method
[16�19], the Painleve expansion method [20], the trans-
formed rational function method [21], the inverse scatter-
ing method [22�24], the mapping method [25], tanh�coth
method [26, 27], the collocation method [28], �rst inte-
gral method [29, 30], the rank analysis method [31], the
parameter-expansion method [32], the auxiliary equation
method [33], (G′/G)-expansion method [34�38]. The key
idea of the original (G′/G)-expansion method is that the
exact solutions of nonlinear partial di�erential equations
(PDEs) can be expressed by a polynomial in one variable
(G′/G) in which G = G(ξ) satis�es the second ordinary
di�erential equation G′′(ξ) + λG′(ξ) + µG(ξ) = 0, where
λ and µ are constants.
In the present paper, we will use the two-variable

(G′/G, 1/G)-expansion method and (1/G′)-expansion
method. (G′/G, 1/G)-expansion method is considered
as a generalization of the original (G′/G)-expansion
method. The key idea of the two-variable (G′/G, 1/G)-
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-expansion method is that the exact traveling wave solu-
tions of nonlinear PDEs can be expressed by a polynomial
in two variables (G′/G) and (1/G), in which G = G(ξ)
satis�es a second-order linear ordinary di�erential equa-
tion (ODE) G′′(ξ)+λG(ξ) = µ. Similarly, the main idea
of (1/G′)-expansion method is that our solutions can be
expressed by a polynomial (1/G′) and G = G(ξ) satis-
�es a second-order linear ODE G′′(ξ) + λG′(ξ) + µ = 0
where λ and µ are constants. For both methods, the de-
gree of the polynomials can be determined by consider-
ing the homogeneous balance between the highest-order
derivatives and nonlinear terms in the given nonlinear
PDEs. Besides, the coe�cients of this polynomial can be
obtained by solving a set of algebraic equations resulting
from the process of using the method. As a pioneer work,
Li et al. [39] have applied the two-variable (G′/G, 1/G)-
-expansion method and found the exact solutions of the
Zakharov equations. Then Zayed and Abdelaziz [40, 41]
determined exact solutions of some nonlinear evolution
equations. (1/G′)-expansion method has �rst been in-
troduced by Yoku³ [42].
The present paper investigates the applicability and

e�ectiveness of the (G′/G, 1/G)-expansion method and
(1/G′)-expansion method on nonlinear evolution equa-
tions and systems of NEEs. In Sect. 2 and Sect. 3 we
describe these methods for �nding exact travelling wave
solutions of nonlinear evolution equations. In Sect. 4,
we illustrate these methods in detail with the Boussinesq
equation and the system of variant Boussinesq equations.
Finally, some conclusions are given.

2. The (G′/G, 1/G) expansion method

In this section, we describe the main steps of the
(G′/G, 1/G)-expansion method to �nd travelling wave
solutions of nonlinear evolution equations. Li et al. [39]
has summarized the (G′/G, 1/G)-expansion method as
follows.
Consider the second order linear ODE (LODE)

G′′(ξ) + λG(ξ) = µ (2.1)

and we take
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φ = G′/G, ψ = 1/G (2.2)

for simplicity here and after. Using (2.1) and (2.2), we
get

φ′ = −φ2 + µψ − λ, ψ′ = −φψ. (2.3)

From the three cases of the general solutions of the LODE
(2.1), we have:
Case 1. When λ < 0, the general solutions of the

LODE (2.1) is given as

G(ξ) = A1 sinh(
√
−λξ) +A2 cosh(

√
−λξ) + µ/λ

and we have

ψ2 =
−λ

λ2σ + µ2
(φ2 − 2µψ + λ), (2.4)

where A1 and A2 are two arbitrary constants and σ =
A2

1 −A2
2.

Case 2. When λ > 0, the general solutions of the
LODE (2.1) is clearly

G(ξ) = A1 sin(
√
λξ) +A2 cos(

√
λξ) + µ/λ

and we have

ψ2 =
λ

λ2σ − µ2
(φ2 − 2µψ + λ), (2.5)

where A1 and A2 are two arbitrary constants and σ =
A2

1 +A2
2.

Case 3. When λ = 0, the general solutions of the
LODE (2.1) is

G(ξ) =
µ

2
ξ2 +A1ξ +A2

and we have

ψ2 =
1

A2
1 − 2µA2

(φ2 − 2µψ), (2.6)

where A1 and A2 are two arbitrary constants.
Now consider a nonlinear evolution equation with time

and spatial variable one each,

P (u, ut, ux, utt, uxt, uxx, . . .) = 0. (2.7)

In general, the left-hand side of Eq. (2.7) is a polynomial
in u and its various partial derivatives. The main steps
of the (G′/G, 1/G) expansion method are:
Step 1. By coordinates transformation ξ = x− ct and

with u(x, t) = u(ξ), Eq. (2.7) can be reduced to an ODE
on u(ξ) with

P (u,−cu′, u′, c2u′′,−cu′, u′′, . . .) = 0. (2.8)

Step 2. Suppose that the solution of ODE (2.8) can
be expressed by a polynomial in φ and ψ as

u(ξ) =

N∑
i=0

aiφ
i +

N∑
i=1

biφ
i−1ψ, (2.9)

where G = G(ξ) satis�es the second order LODE (2.1),
ai (i = 0, . . . , N), bi (i = 1, . . . , N), c, λ and µ are
constants to be determined later, and the positive inte-
ger N can be determined by using homogeneous balance
between the highest order derivatives and the nonlinear
terms appearing in ODE (2.8).
Step 3. Substituting (2.9) into Eq. (2.8), using (2.3)

and (2.4) (here case 1 is taken as example) the left-hand
side of (2.8) can be converted into a polynomial in terms
of φ and ψ, in which the degree of ψ is not larger than 1.

Equating each coe�cient of the polynomial to zero yields
a system of algebraic equations in ai (i = 0, . . . , N),
bi (i = 1, . . . , N), c, λ (λ < 0), µ, A1, and A2.
Step 4. Solve the algebraic solutions in the Step 3

with the aid of maple. Substituting the values of ai (i =
0, . . . , N), bi (i = 1, . . . , N), c, λ, µ, A1, and A2 obtained
into (2.9), one can obtain the travelling wave solutions
expressed by the hyperbolic functions of Eq. (2.8).
Step 5. Similar to Step 3 and Step 4, substituting

(2.9) into Eq. (2.8), using (2.3) and (2.5) (or (2.3) and
(2.6)), we obtain the travelling wave solutions of Eq. (2.8)
expressed by trigonometric functions (or expressed by ra-
tional functions).

3. The (1/G′) expansion method

Step 1. This step is the same as the other method,
that means, a PDE (2.7) can be converted to ODE (2.8).
Step 2. Suppose that the solution of ODE (2.8) can

be expressed by a polynomial (1/G′) as follows:

u(ξ) =

N∑
i=0

ai

(
1

G′

)i
, (3.1)

where G = G(ξ) satis�es the second order LODE

G′′(ξ) + λG′(ξ) + µ = 0, (3.2)

where ai (i = 0, . . . , N), λ, µ are constants to be deter-
mined later and the positive integer N is homogeneous
balance number.
Step 3. The solution of the di�erential Eq. (3.2) is

G(ξ) = −(µξ)/λ+ c1 e
−λξ + c2. (3.3)

Then
1

G′(ξ)
=

λ

−µ+ λc1 [cosh(ξλ)− sinh(ξλ)]
(3.4)

can be written.
Step 4. By substituting (3.1) into (2.8) and using sec-

ond order LODE (3.2), the left-hand side of (2.8) can be
converted into a polynomial in terms of (1/G′). Equating
each coe�cient of the polynomial to zero yields a system
of algebraic equations and solving the algebraic equations
by Maple we obtain ai, c, λ, and µ constants.

4. Applications of the (G′/G, 1/G) and (1/G′)
expansion method

4.1. The Boussinesq equation

4.1.1. Using the (G′/G, 1/G) expansion method
We consider the Boussinesq equation

utt − uxx −
(
u2
)
xx

+ uxxxx = 0, (4.1.1)

which describe the surface water waves whose horizontal
scale is much larger than the depth of the water. Previ-
ously, some authors found exact solutions of Eq. (4.1.1)
[43�45]. Using the transformation ξ = (x−ct), Eq. (4.1.1)
is carried to an ODE

(c2 − 1)u′′ − (u2)′′ + u′′′′ = 0, (4.1.2)

where the prime denotes the derivation with respect to ξ.
Integrating Eq. (4.1.2) twice and setting the constants of
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integration equal to zero we obtain

(c2 − 1)u− u2 + u′′ = 0. (4.1.3)

By balancing u′′ and u2 we get

N + 2 = 2N, N = 2. (4.1.4)

Consequently from (2.9) we get

u(ξ) = a0 + a1φ+ a2φ
2 + b1ψ + b2φψ, (4.1.5)

where a0, a1, a2, b1, and b2 are constants to be deter-
mined later. As we mentioned above there are three cases
to be disscused.

Case 1. When λ < 0 (hyperbolic function solutions)

Substituting (4.1.5) into Eq. (4.1.3), we use (2.3)
and (2.4). The left-hand side of (4.1.3) becomes a polyno-
mial in φ and ψ. Setting the each coe�cient of equation
to zero yields a system of algebraic equations in a0, a1,
a2, b1, b2, c, σ, µ, and λ:

φ3 : 2b1λb2 − 2a1a2λ
2σ + 6b2λµ

− 2a1a2µ
2 + 2a1λ

2σ + 2a1µ
2,

φ2 : b1λµ− a21µ2 − 2a0a2µ
2 + c2a2µ

2 − 2a0a2λ
2σ

+ b21λ+ 6a2µ
2λ+ c2a2λ

2σ − a2µ2 + 8a2λ
3σ

− a2λ2σ − a21λ2σ + b22λ
2,

ψφ2 : − 2a2b1µ
2 − 2a1b2λ

2σ + 2b1λ
2σ − 2a1b2µ

2

− 2a2b1λ
2σ + 2b1µ

2 − 10a2µλ
2σ − 2b22λµ− 10a2µ

3,

φ : − 2a0a1µ
2 − 2a0a1λ

2σ + c2a1µ
2 + 6b2λ

2µ− a1µ2

+ 2b1b2λ
2 + 2a1µ

2λ+ c2a1λ
2σ + 2a1λ

3σ − a1λ2σ,
ψφ : − 4b1λb2µ− 2a1b1µ

2 − 2a0b2λ
2σ − 2a0b2µ

2

− 3a1µλ
2σ + c2b2µ

2 + 5b2λ
3σ + c2b2λ

2σ − b2λ2σ
− 7b2λµ

2 − b2µ2 − 2a1b1λ
2σ − 3a1µ

3,

φ0 : b1λ
2µ+ c2a0λ

2σ − a0λ2σ + 2a2λ
4σ − a0µ2

+ c2a0µ
2 − a20λ2σ + b21λ

2 − a20µ2,

ψφ0 : − 2a0b1µ
2 − b1µ2 − b1λµ2 + c2b1λ

2σ

− 2a0b1λ
2σ − 4a2µλ

3σ + c2b1µ
2 + b1λ

3σ

− 2b21λµ− b1λ2σ. (4.1.6)

Solving the algebraic equations by Maple we get,

a0 = 3λ, a1 = 0, a2 = 3, b1 = −3µ,

b2 =

√
9λ2σ + 9µ2

−λ
, c =

√
1 + λ. (4.1.7)

Substituting these solutions into (4.1.5), using (2.2) and
(2.4) we obtain travelling wave solution of (4.1.1) as fol-
lows:

u(ξ) = 3λ− 3µ

A1 sinh(ξ
√
−λ) +A2 cosh(ξ

√
−λ) + µ/λ

+
3[A1 cosh(ξ

√
−λ)
√
−λ+A2 sinh(ξ

√
−λ)
√
−λ]2

[A1 sinh(ξ
√
−λ) +A2 cosh(ξ

√
−λ) + µ/λ]2

+
[A1 cosh(ξ

√
−λ)
√
−λ+A2 sinh(ξ

√
−λ)
√
−λ]

[A1 sinh(ξ
√
−λ) +A2 cosh(ξ

√
−λ) + µ/λ]2

×
√

9λ2σ + 9µ2

−λ
, (4.1.8)

where

ξ = x− (
√
1 + λ)t and σ = A2

1 −A2
2. (4.1.9)

In particular if we set A1 = 0, A2 > 0 and µ = 0 in
(4.1.8) then we have solitary solution

u(ξ) = 3λ
[
1− tanh2(ξ

√
−λ)

+ i tanh(ξ
√
−λ)sech(ξ

√
−λ)

]
, (4.1.10)

but if we set A2 = 0, A1 > 0 and µ = 0 then we have
solitary solution

u(ξ) = 3λ
[
1− coth2(ξ

√
−λ)

+ coth(ξ
√
−λ)csch(ξ

√
−λ)

]
. (4.1.11)

Case 2. When λ > 0 (trigonometric function solutions)

Substituting (4.1.5) into Eq. (4.1.3), we use (2.3) and
(2.5). The left-hand side of (4.1.3) becomes a polynomial
in φ and ψ. Vanishing each coe�cient of this polynomial,
we get the system of algebraic equations which can be
solved by Maple to �nd the following results:

a0 = 3λ, a1 = 0, a2 = 3, b1 = −3µ,

b2 =

√
−9λ2σ + 9µ2

−λ
, c =

√
1 + λ. (4.1.12)

Substituting these solutions into (4.1.5), using (2.2) and
(2.5) we obtain travelling wave solution of (4.1.1) as fol-
lows:

u(ξ) = 3λ+
3[A1 cos(ξ

√
λ)
√
λ−A2 sin(ξ

√
λ)
√
λ]2

[A1 sin(ξ
√
λ) +A2 cos(ξ

√
λ) + µ/λ]2

− 3µ

A1 sin(ξ
√
λ) +A2 cos(ξ

√
λ) + µ/λ

+

√
9µ2 − 9λ2σ

−λ

× [A1 cos(ξ
√
λ)
√
λ−A2 sin(ξ

√
λ)
√
λ]

[A1 sin(ξ
√
λ) +A2 cos(ξ

√
λ) + µ/λ]2

, (4.1.13)

where

ξ = x− (
√
1 + λ)t and σ = A2

1 +A2
2. (4.1.14)

In particular, if we set A1 = 0, A2 > 0 and µ = 0 in
(4.1.13) then we have periodic solution

u(ξ) = 3λ[1 + tan2(ξ
√
λ)− tan(ξ

√
λ) sec(ξ

√
λ)],

(4.1.15)

while we set A2 = 0, A1 > 0 and µ = 0 then we have

u(ξ) = 3λ[1 + cot2(ξ
√
λ) + cot(ξ

√
λ) csc(ξ

√
λ)].

(4.1.16)

Case 3. λ = 0 (rational function solutions)

Substituting (4.1.5) into Eq. (4.1.3), using (2.3) and
(2.6) the left-hand side of (4.1.3) becomes a polynomial
in φ and ψ. Vanishing each coe�cient of this polyno-
mial, we get the system of algebraic equations which can
be solved by Maple to �nd the following results:

a0 = 0, a1 = 0, a2 = 3, b1 = −3µ,
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b2 =
√
−18µA2 + 9A2

1, c = −1. (4.1.17)

Substituting these solutions into (4.1.5), using (2.2) and
(2.6) we obtain travelling wave solution of (4.1.1) as fol-
lows:

u(ξ) =
3(µξ +A1)

2(
µξ2

2 +A1ξ +A2

)2 − 3µ
µξ2

2 +A1ξ +A2

+

√
−18µA2 + 9A2

1(µξ +A1)(
µξ2

2 +A1ξ +A2

)2 , (4.1.18)

where ξ = x+ t.
Let us note that our solutions are di�erent from the

given ones in [43�45].

4.1.2. Using the (1/G′) expansion method
From (4.1.4) we know the balance number is N = 2, so

if we substitute this number into (3.1), our solution can
be expressed as follows:

u(ξ) = a0 + a1

(
1

G′

)
+ a2

(
1

G′

)2

. (4.1.19)

If we substitute (4.1.19) into ODE (4.1.3) using (3.2) the
left hand side of ODE becomes a polynomial in (1/G′).
Setting the each coe�cient of equation to zero yields a
system of algebraic equations which can be solved by
Maple to �nd following results:

a0 = 0, a1 = 6µλ, a2 = 6µ2, c =
√

1− λ2. (4.1.20)
If we solve our second order LODE (3.2):

G′′(ξ) + λG′(ξ) + µ = 0,

we �nd the solution

G(ξ) = c1
−e−λξ

λ
− µ/λξ + c2. (4.1.21)

By substituting (4.1.20) into (4.1.19) using (4.1.21) we
obtain

u(ξ) =
6µλ2

−µ+ c1λ[cosh(ξλ)− sinh(ξλ)]

+
6µ2λ2

−µ+ c1λ[cosh(ξλ)− sinh(ξλ)]2
, (4.1.22)

where ξ = x−
√
1− λ2t.

4.2. The system of variant Boussinesq equations

4.2.1. Using the (G′/G, 1/G) expansion method
The system of variant Boussinesq equations is given as

ut + vx + uxu = 0, (4.2.1)

vt + (uv)x + uxxx = 0, (4.2.2)

where u = u(x, t) represents the velocity and v = v(x, t)
total depth. Some exact solutions of Eq. (4.2.1) have
been given by several authors [46, 34]. Using the wave
variable

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = x− ct, (4.2.3)

the system is carried to a system of ODEs

−cu′ + v′ + u′u = 0, (4.2.4)

−cv′ + (uv)′ + u′′′ = 0. (4.2.5)

Integrating Eqs. (4.2.4) and (4.2.5) once we �nd

v = cu− u2

2
+ α, (4.2.6)

−cv + uv + u′′ = β, (4.2.7)

where α, β are the constants of integral. Substituting
(4.2.6) into (4.2.7) we obtain

u′′ = (β + αc) + (c2 − α)u− 3c

2
u2 +

1

2
u3 = 0. (4.2.8)

Balancing u′′ with u3 gives

N = 1. (4.2.9)

From (2.9) we get

u(ξ) = a0 + a1φ+ b1ψ, (4.2.10)

where a0, a1 and b1 are constants determined later.

Case 1. When λ < 0

Substituting (4.2.10) into (4.2.8) using (2.3) and (2.4).
The left hand side of equation becomes a polynomial in φ
and ψ, setting each coe�cient of equation to zero to get
the system of equations which can be solved by Maple to
�nd the following results:

a0 = c, a1 = −1, b1 =
√
−(λ2σ + µ2)/λ,

c = c, α = −λ/2− c2/2, β = 0. (4.2.11)

Substituting these results into (4.2.10) using (2.2) and
(2.4) we obtain

u(ξ) = c (4.2.12)

− A1 cosh(ξ
√
−λ)
√
−λ+A2 sinh(ξ

√
−λ)
√
−λ

A1 sinh(ξ
√
−λ) +A2 cosh(ξ

√
−λ) + µ/λ

+

√
−(λ2σ − µ2/λ)

A1 sinh(ξ
√
−λ) +A2 cosh(ξ

√
−λ) + µ/λ

,

where ξ = x− ct and σ = A2
1 −A2

2.

In particular if we set A1 = 0, A2 > 0 and µ = 0 then
we have solitary solution

u(ξ) = c−
√
λ[ i tanh(ξ

√
−λ)− sech(ξ

√
−λ)],(4.2.13)

while we set A2 = 0, A1 > 0 and µ = 0; then we have
solitary solution

u(ξ) = c−
√
−λ[coth(ξ

√
−λ)− csch(ξ

√
−λ)].(4.2.14)

Case 2. When λ > 0

Substituting (4.2.10) into (4.2.8) using (2.3) and (2.5).
The left hand side of equation becomes a polynomial in
φ and ψ, vanishing each coe�cient of equation to get the
system of equations which can be solved by Maple to �nd
following results:

a0 = c, a1 = −1, b1 =
√

(λ2σ − µ2)/λ,

c = c, α = −λ/2− c2/2, β = 0. (4.2.15)

Substituting these results into (4.2.10) using (2.2) and
(2.4) we obtain travelling wave solution

u(ξ) = c− A1 cos(ξ
√
λ)
√
λ−A2 sin(ξ

√
λ)
√
λ

A1 sin(ξ
√
λ) +A2 cos(ξ

√
λ) + µ/λ

+

√
(λ2σ − µ2)/λ

A1 sin(ξ
√
λ) +A2 cos(ξ

√
λ) + µ/λ

, (4.2.16)

where ξ = x− ct and σ = A2
1 +A2

2.

In particular if we set A1 = 0, A2 > 0 and µ = 0 then
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we have periodic solution

u(ξ) = c+
√
λ[tan(ξ

√
λ) + sec(ξ

√
λ)], (4.2.17)

while we set A2 = 0, A1 > 0 and µ = 0 then we have
periodic solution

u(ξ) = c−
√
λ[cot(ξ

√
λ)− csc(ξ

√
λ)]. (4.2.18)

Case 3. When λ = 0
Substituting (4.2.10) into (4.2.8) using (2.3) and (2.6).

The left hand side of equation becomes a polynomial in
φ and ψ, vanishing each coe�cient of equation to get the
system of equations which can be solved by Maple to �nd
the following results:

a0 = c, a1 = −1, b1 =
√
A2

1 − 2µA2,

c = c, α = −c
2

2
, β = 0. (4.2.19)

Substituting these results into (4.2.10) using (2.2) and
(2.6) we obtain travelling wave solution

u(ξ) = c− µξ +A1

µξ2

2 +A1ξ +A2

+

√
A2

1 − 2µA2

µξ2

2 +A1ξ +A2

, (4.2.20)

where ξ = x− ct.
These are new exact solutions and di�erent from the

solutions found in [46, 34].

4.2.2. Using the (1/G′) expansion method
From (4.2.9) we know the balance number is N = 1 so

if we substitute this number into (3.1), our solution can
be expressed as follows:

u(ξ) = a0 + a1

(
1

G′

)
. (4.2.21)

If we substitute (4.1.19) into ODE (4.2.8) using (3.2) the
left hand side of ODE becomes a polynomial in (1/G′).
Setting the each coe�cient of equation to zero yields a
system of algebraic equations which can be solved by
Maple to �nd the following results:

a0 = λ+
√
−2α+ λ2, a1 = 6µ,

c =
√
−2α+ λ2, β = 0. (4.2.22)

By substituting (4.2.22) into (4.2.21) using (4.1.21) we
obtain

u(ξ) = λ+
√
−2α+ λ2

+
2µλ

−µ+ c1λ[cosh(ξλ)− sinh(ξλ)]
, (4.2.23)

where ξ = x−
√
−2α+ λ2t.

5. Conclusion

In this work, we have used the two-variable
(G′/G, 1/G)-expansion method and (1/G′)-expansion
method to derive new exact solutions of the Boussinesq
equation and the system of variant Boussinesq equations.
We show that the solutions we found in this article are
di�erent from the solutions presented by other authors
in recent papers. We foresee that our results can be

found potentially useful for applications in mathemati-
cal physics and engineering. All solutions in this paper
have been found by aid of Maple packet program. Thus,
we conclude that the proposed method can be extended
to solve the nonlinear problems which arise in the theory
of solitons and other areas.
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