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The loss of the coherence happens due to the interaction between the desired system and its surroundings.
Addressing decoherence is one of the main concepts in the study of quantum channels to access their potential for
various scale. In this process the information of the system is penetrated into the environment. Therefore, the
measurement of the environment could be used as the error correction method. Phase damping channels principally
belong to random unitary channels and can be corrected by classical information. This paper presents a method to
generate non-random unitary phase damping channels based on the Bloch vectors in two qubits systems. A phase
damping channel which consisted of a two qubits system and a single qubit environment was investigated. The
results demonstrated that the phase damping channels belong to random unitary dynamics if the three-dimensional
tetrahedron volume spanned by the Bloch vectors in R3 is not zero, or, the same hyperplane in R3 was not pointed
by the Bloch vectors. It is found that the Bell state belongs to random unitary class and can be corrected based
on classical information obtained from environmental measurements.
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1. Introduction

Closed system is an ideal system that does not interact
with the outside world, whereas real system has undesir-
able interaction with the environment [1, 2]. The interac-
tion between an open quantum system and its surround-
ings causes correlation between the states of the system
and of the environment that is called decoherence [3].
Decoherence arises as a result of coupling of the desired
system and quantum environment. Decoherence is the
most important obstacle to use quantum states in larger
and larger scale [4]. Phase damping channel is one type
of decoherence in which non-diagonal elements of den-
sity matrix are altered due to the coupling of the system
and environment; however, diagonal elements of density
matrix remain unchanged. Two sources are responsible
for decoherence. The most important source is correla-
tion between system and its surrounding that is a direct
outcome of an open quantum system. Classical �uctua-
tions of �elds are the second source of decoherence [5].
Decoherence is usually explained without quantum envi-
ronment that these channels are denoted as random uni-
tary (RU) channels. These channels can be corrected by
classical information of environment [6�9] and are more
important in practical view. For instance, decoherence
can be regulated by RU dynamics in nuclear magnetic
resonance and quantum computers which are based on
trapped ions [2, 4].
For single qubits and qutrits, error correction method

rests on measurement of the quantum environment in any
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phase damping channels, therefore these channels always
belong to RU maps [9, 10]. In contrast, there are some
cases where correcting decoherence by measuring the en-
vironment is impossible and it might be a problematic
subject when environment is too big. Furthermore, in
some cases where the whole environment is accessible,
correcting decoherence is unattainable.
Landau and Streater explained that in the Hilbert

spaces of dimension N > 3, there are some situations
in which error correction method by measuring the envi-
ronment is impossible [10]. Helm et al. developed a geo-
metrical measurement by using the Bloch sphere picture
to determine the non-RU channels [7, 8]. In this paper a
new method is presented using expansion of considerable
state based on Hamiltonian's eigenvalues to investigate
the non-RU dynamics.

2. Quantum channels

In order to describe dynamical evolution of an open
quantum system, it is supposed that the system and its
environment are separable and there is no correlation be-
tween them. ε(ρ) is a mapping that describes the evo-
lution of the system in which it acts on initial density
operator. Then, density matrix is transformed into new
density operator as follows [2]:

ρ′ = ε(ρ). (2.1)

Dynamic of quantum system is a completely positive
map (or quantum channel) that is shown in term of the
Kraus operators (Ki) as follows:

ρ′s → ε (ρs) =
∑
i

KiρsK
†
i . (2.2)

As it can be seen in the equation, there is a set of uni-
tary operators instead of one unitary operator. Therefore
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some of the pure states of the system may be entangled
to some of the environmental state. For N -dimension of
the Hilbert space these completely positive maps are at
most N2 Kraus operators [8]. It is generally supposed

that the channel is trace-preserving (
∑

iK
†
iKi = 1).

In addition, the channel is unital or doubly stochastic
if the completely positive state is mapped unto itself(∑

iKiK
†
i = 1

)
.

2.1. Phase damping channel
Decoherence of an open system can be caused by the

increase of the entanglement between system and envi-
ronment [1, 7, 8]. Pure state is turned into mixed state as
the consequence of interaction between the system and
environment [2, 3, 7, 11]. In this process information
of the system is penetrated into environment. In addi-
tion, non-diagonal elements of reduced density matrix are
changed. Phase damping channels are the simplest map
among other maps. Phase damping channels is de�ned
in phase damping basis as follows:

{|n〉, 1 ≤ n ≤ N} , (2.3)

in which N is the dimension of quantum system. The di-
agonal elements remain unchanged, 〈n|ρ|n〉 = const, with
n = 1, . . . , N in phase damping channel and the changing
in non-diagonal elements is the only impact of environ-
ment 〈n|ρ|m〉 with n 6= m [7, 8]. Hence, Kraus operators
are diagonal in this basis Ki = diag(ai1, ai2, . . . , aiN ),
and consequently the whole map is diagonal

ρ′mn = ρmn〈an|am〉, (2.4)

in which |an〉 = (a1n, a2n, . . . , arn) is a set of N nor-
malized complex vectors. It is concluded that the phase
damping channels are the only diagonal doubly stochas-
tic quantum channels. It was proven that there are some
nonunitary extremal doubly stochastic completely pos-
itive maps which are not able to be described without
quantum environment. In this case the system coupling
with the environment |an〉 may be recognized as environ-
mental quantum states.

2.2. Random unitary channel
Quantum channels are used for data transmission and

decoherence happens in these channels because of in-
evitable interaction between system and environment.
Therefore, there is a need to develop error correction
techniques in order to use quantum states in huge quan-
tum information tasks [2]. Using the information ob-
tained from the environment is one of the most impor-
tant error correction schemes. RU channels are corrected
using classical information from environment. RU chan-
nels can be described as a convex combination of unitary
transformation as follows [12�15]:

ε(ρ) =
∑
i

PiU iρU
†
i , Pi > 0,

∑
i

Pi = 1, (2.5)

in which ρ is density operator and Pi are the scalars that
form a probability distribution and Ui are unitary oper-
ators. RU channel satis�es the following equation, so it
is unital [13]:

ε(1) = 1. (2.6)

If the only error mechanism is a classical uncertainty, it
is possible to describe this map as the mixture of unitary
maps. The mathematical description of this mixture is an
RU map. On the other hand, if decoherence arises from
coupling of the system and a quantum environment, this
map can no longer be described by an RU map and this
channel can be corrected by using classical information
obtained from the environment as well [12].
A unital completely positive trace preserving map is

RU map if its state representative is described as follows:

φ =
∑
i

Pi (Ui ⊗ 1) |I〉〈I|
(
U†i ⊗ 1

)
, (2.7)

in which φ is called state representative of completely
positive map that it assigns to each completely positive
map Hin to Hout a state on Hin ⊗Hout. In addition, |I〉
denotes maximally entangled (ME) state vector

|I〉 := 1√
N

N∑
i=1

|i, i〉, (2.8)

in which {|i〉} are orthogonal basis in Hin. In addition,
a pure state will be an RU map if this pure state is ME.
Also, ME states consist of the Bell states. In other words,
if a pure state is a convex combination of ME states, it
will be RU dynamics. Evidently, the Bell state is a part
of RU class [4].

3. RU and phase damping channels

for two qubits systems

Landau and Streater demonstrated that, in the set
of diagonal doubly stochastic quantum channels in the
Hilbert spaces N > 3, there are some non-unitary ex-
tremal maps that perfect improvement is not possible in
spite of complete monitoring the environment [10]. A di-
agonal doubly stochastic channel ε is considered as ex-
tremal channel if ε admits an expression of form Kraus

operators ε(ρ) =
∑r

i=1K iρK
†
i , whereK

†
iKj}ri,j=1 is a set

of matrices that is linear independent. Linear indepen-
dent is the same as related vectors {|a1〉, . . . , |aN〉} ⊂ Cr

that constitute full set of vectors if 〈an|M |an〉 = 0, 1 ≤
n ≤ N imply M = 0 where M ∈ Cr×r. The linear in-

dependence of the diagonal matrices {K†iKj}ri,j=1 means

r2 ≤ N where N represents the dimension of diagonal
matrices and r denotes the number of operators in Kraus
representation or dimensionality of the vectors |an〉. It is
de�ned that a phase damping channel will be extremal if
{|ψn〉〈ψn|} is operator basis.
Helm et al. suggested a way to construct non-RU chan-

nels by using the Bloch vectors. It is possible to assign a

corresponding generalized real Bloch vectors bn ∈ Rd2−1

to a given normalized complex vector |ψn〉 ∈ cd, in which
d-dimensional quantum systems and N = d2 [7, 8]. Since
in two qubits systems the Pauli matrices satisfy the prop-
erties of a matrix basis, it means that they are traceless,
i.e. Trσi = 0 and orthogonal, they can be used for the
Bloch vectors decomposition of qubits. The Bloch vector
expansion of the environment density matrix is de�ned
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as [16�18]:

|ψn〉〈ψn| := Bn · σ, Bn =
1

2
(1, bn) ∈ Rd2

, (3.1)

in which the Bloch vectors form an operator basis and

{Bn} denotes a linear independent set spanning Rd2

if
a set of d2 projectors {|ψn〉〈ψn|}, (n = 1, . . . , d2) form
an operator basis. Extremality condition can be de�ned
in terms of the Bloch vectors. In summary channel de-
�ned by dynamical vectors {|ψ1〉, . . . , |ψ4〉} is an extremal
channel if the following equivalence is satis�ed:

Vt :=
1

6
det


1 1 1 1

b1x b2x b3x b4x
b1y b2y b3y b4y
b1z b2z b3z b4z

 6= 0. (3.2)

In addition, geometrical interpretation could be de-
�ned that phase damping channels are extremal if the
volume of the three-dimensional tetrahedron spanned by
the Bloch vectors in R3 is not zero, or the same hyper-
plane in R3 is not pointed by the Bloch vectors [7, 8].

3.1. Construction of non-RU dynamics
in phase damping channels

Phase damping channels can be considered as the only
diagonal doubly stochastic quantum channels and, there
are nonunitary extremal doubly stochastic completely
positive maps in N > 3. In this section a new method is
suggested to generate non-RU phase damping channels
in two qubits system. The system includes bipartite sys-
tem of qubits (A and B) which interacts with quantum
environment that consisted of single qubit. Therefore,
in this system r2 = d2 = N can be satis�ed. The total
Hamiltonian H of this system is considered as follows:

H = Hs +HI +HE, (3.3)

in which Hs = Ω1σ
(A)
z + Ω2σ

(B)
z denotes the system

Hamiltonian and HI = κ1σ
(A)
Z σ

(E)
Z + κ2σ

(B)
Z σ

(E)
Z is in-

teraction Hamiltonian that describes local coupling of
the system and the environment. HE = Γ · σE with
Γ = (ΓX ,ΓY ,ΓZ), σ

E = (σXσY σZ) represents the envi-
ronment Hamiltonian.
It is assumed that the initial state is de�ned by a prod-

uct state ρ ⊗ σ in which ρ is the initial density matrix
of the system and σ is the initial density matrix of envi-
ronment. The initial state is supposed to be a product
state |ψ〉 = |ψs〉 ⊗ |ψE〉 where |ψs〉 describes density ma-
trix of the system that includes two qubits so it can be
described as follows:

|ψs〉 = α (|00〉+ |11〉) + β (|10〉+ |01〉) ,
2|α|2 + 2|β|2 = 1, (3.4)

in which α and β are coe�cients. In order to satisfy the
normalization condition, the sum of the squares of coef-
�cients should be one. Furthermore, |ψE〉 is state of the
environment which is de�ned as follows:

|ψE〉 =
(

1

0

)
. (3.5)

To investigate the extremal channels, total state is ex-

panded based on Hamiltonian's eigenvectors. Time evo-
lution for total wave function (|ψs〉 ⊗ |ψE〉) can be found
readily by application of the following equation:

|ψ(x, t)〉 =
∑
E

CEuE e
− iEt/~, (3.6)

in which ~ = 1 is supposed and CE is coe�cient. uE
and E denote Hamiltonian eigenstates and correspond-
ing eigenvalues, respectively. uE and E are extracted by
means of HuE(x) = EuE(x). In addition, CE is obtained
by using ψ(x) =

∑
E CEuE(x). Total density matrix can

be obtained by using time evolution density matrix. As
a result, environmental Bloch vectors can be calculated
and the non-RU channels are examined by environmen-
tal Bloch vectors. Finally, total density matrix can be
de�ned as follows:

ρ = |ψ(x, t)〉〈ψ(x, t)| . (3.7)

Finally, the evolution reduced density environment ma-
trices ρE = |ψn(t)〉〈ψn(t)| can be obtained by tracing
over the system degrees of freedom, in which |ψn(t)〉 is
time evolution of environmental state. Extremality can
be investigated by means of the three-dimensional tetra-
hedron (Vt) volume spanned by the Bloch vectors in R3.
Vt was obtained using Eq. (3.2) in the framework of time-
-alpha-dependent, as in Fig. 1.

Fig. 1. Volume of three-dimensional tetrahedron
spanned by the Bloch vectors in the three-dimensional
space against t and α.

As it can be seen in the �gure, there are some points
that satisfy extremality condition i.e. Vt = 0 and in
some points the extremality condition is not satis�ed i.e.
Vt 6= 0. For instance, at point A (α = 0.56, t = 4.7)
Vt is equal to zero and this channel belongs to RU dy-
namic. Therefore, correcting decoherence by obtaining
classical information through measuring the quantum en-
vironment is possible in the mentioned point. On the
contrary, at point B (α = 0.5, t = 1.5), Vt is not equal to
zero, therefore extremality condition is not satis�ed and
channel does not belong to RU maps.
Another geometrical interpretation for description of

non-RU channels is de�ned by spanned corresponding
Bloch vectors in R3. As it can be seen in Fig. 2, the
Bloch vectors were obtained for two desired points.
As in Fig. 2, the corresponding Bloch vectors for points

A and B are shown. In Fig. 2a the channel belongs to
RU dynamics, because the vectors point to the same hy-
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Fig. 2. Exemplary Bloch vectors in the three-
-dimensional space at point A (a) and point B (b).

perplane in R3. Since Bloch vectors do not point to the
same hyperplane in R3, the phase damping channel is
extremal, as in Fig. 2b.
The Bell state is used to show the validity of RU dy-

namics determination based on Hamiltonian's eigenvec-
tors. It is shown that the Bell state belongs to RU maps.
The framework of time-dependent (Fig. 3) and alpha-
-dependent (Fig. 4) are shown for further investigation.

Fig. 3. Volume of three-dimensional tetrahedron
spanned by the Bloch vectors in the three-dimensional
space against t.

Fig. 4. Volume of three-dimensional tetrahedron
spanned by the Bloch vectors in the three-dimensional
space against α.

According to Figs. 3 and 4, at the points of α = 0 and
α = 1√

2
, phase damping channel belongs to RU channels

at all-time i.e. Vt = 0. Based on classical information
from measurement of the environment, error correction

can be done. It is obvious that at these points
(
α = 0,

α = 1√
2

)
, Eq. (3.4) becomes a Bell state. Hence, these

�gures prove that the Bell state can be corrected by ob-
tained classical information from measurement of the en-
vironment. In contrast, it is found out that, in the rest
of the points of

(
0 < α < 1√

2

)
, at most of the time,

phase damping channel does not belong to RU dynamics
i.e. Vt 6= 0. Furthermore, the error correction method
could not be established by obtaining classical informa-
tion through measurement of the quantum environment.

3.2. Extremality and rotation of environmental state

The impact of the rotation of environmental state on
environment-assisted error correction was examined. In
this case, as previously mentioned, extremality could be
investigated by utilizing Vt in the framework of time-
-alpha-dependent and exemplary Bloch vectors in three-
-dimension space, as in Figs. 5 and 6.

Fig. 5. Volume of three-dimensional tetrahedron
spanned by the rotated Bloch vectors in the three-
-dimensional space against time t and α.

Fig. 6. Exemplary rotated Bloch vectors in the three-
-dimensional space at point C (a) and point D (b).

As shown in the �gure, there are some points that
satisfy extremality condition i.e. Vt = 0 (at point C
(α = 0.5, t = 4.7)) and at some points the extremality
condition is not satis�ed i.e. Vt 6= 0 (at pointD (α = 0.43,
t = 2.55)). The Bloch vectors were obtained for two de-
sired points as another geometrical interpretation for the
description of non-RU channels in Fig. 6. Obviously, the
rotation of environmental state does not directly a�ect
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extremality and therefore it can be expressed as previ-
ously mentioned. For further investigation, the frame-
works of time-dependent (Fig. 7) and alpha-dependent
(Fig. 8) were depicted.

Fig. 7. Volume of three-dimensional tetrahedron
spanned by the rotated Bloch vectors in the three-
-dimensional space against t.

Fig. 8. Volume of three-dimensional tetrahedron
spanned by the rotated Bloch vectors in the three-
-dimensional space against α.

According to Figs. 7 and 8, phase damping channel
can always be described by RU dynamics at the points
of α = 0 and α = 1√

2
. As mentioned earlier, the as-

sumption state turns to the Bell state at these points.
Therefore, this state can be corrected through environ-
mental measurement. However, between the points of
0 < α < 1√

2
, phase damping channel does not belong

to RU maps. Therefore the rotation of the environmen-
tal state does not have e�ect on the results between the
points of 0 ≤ α ≤ 1√

2
.

To investigate the non-RU channel, the following rela-
tions were established between parameters: (1) 0 6= κ1 6=
κ2 6= 0; (2) Γx 6= 0 or Γy 6= 0; (3) Γz 6= 0, otherwise,
extremality condition is not satis�ed.

4. Conclusion

Although environment-assisted error correction
scheme is capable to correct the errors, there are some
extremal channels that cannot be improved by means of
classical information extracted from an environmental
measurement. In this case, a phase damping channel
consisting of two-qubit system interacting with single
qubit environment is investigated. In this paper, the
extremal phase damping channels were constructed by
means of environmental Bloch vectors and the expansion
of desired wave function based on Hamiltonian's eigen-
states. The results demonstrated that the Bell state
always belongs to RU dynamics and the quantum error
method rests on extracting classical information from
environment.
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