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The In�uence of Local Increase of Stress on Eigenvalues

for a Simply Supported Beam
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Local increase of bending stress in a beam may be caused by a decrease of the cross-section (fracture) or a
local increase of bending torque. The increase of stress issues from the well known interdependence between the
stress, the bending torque and the sectional modulus. The work presents a derivation of di�erential equations
for eigenfunctions in both cases. Knowing the eigenfunctions and boundary conditions we determine a system of
algebraic equations for the eigenvalues that are di�erent from the eigenvalues of the beam without local stress
disturbances. Two computational models of local increase of stress were constructed: with fracture and with local
increase of bending torque.
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1. Introduction

The subjects raised in this paper was discussed in many
articles, e.g. [1�3]. Applicability of the separation of vari-
ables method in the linear discrete-continuous systems in
distribution sense can be founded in [1]. Deriving a dif-
ferential equation of transverse vibrations of a beam with
a local change of sti�ness and it solution based on theory
of distribution is presented in [2]. In Ref. [3] was anal-
ysed system with stochastic impulses acting in on it in
the class of generalized functions.
In this paper, using generalized functions approach

were constructed two computational models of local in-
crease of stress. The local increase of bending stress in
Euler's beam may be caused by a decrease of its trans-
verse section (e.g., due to a fracture) or by a local increase
of the bending torque. The increase of the stress results
from the well-known interdependence between the stress,
the bending torque and the bending strength index. The
local increase of the bending torque may be caused either
external or internal forces [4].
In the case under consideration it will be caused by the

internal forces of a certain discrete-continuous system. A
model of this system was discussed in [52]. The purpose
of this work is to solve the eigenproblems in both cases
mentioned above. To this end, a mathematical model of
the initial-boundary problems is presented. It is shown
that the method of separation of variables can be success-
fully applied for the case with structural dumping factor,
α0 di�erent from zero.

2. Formulation of the problem

The di�erential equation describing transverse vibra-
tions of a beam has a form (Ref. [6], p. 173 and 87)
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∂2M(x)

∂x2
+ ρF (x)

∂2u(x, t)

∂t2
= q(x, t), ρ > 0, (1)

where

M(x) = EJ(x)

(
∂2u(x, t)

∂x2
+
α0

E

∂3u(x, t)

∂x2∂t

)
,

α0 > 0, E > 0, (2)

and u(x, t) is a beam de�ection at point x and at a mo-
ment t of time; α0 is a structure dumping factor; E de-
notes Young's modulus; J(x) is the cross section moment
of inertia; F (x) is the cross section area, % is a density of
beam's material.
We assume that functionsM(x), J(x) and F (x) are at

least twice di�erentiable in the classical sense. Intending
to derive the equation of a beam with a fracture, we must
weaken the assumption about di�erentiability of M(x),
J(x) and F (x).
The boundary conditions for (1) have the form: (the

free end of beam)

u(0, t) = u(l, t) = 0, ∂
2u(0,t)
∂x2 = ∂2u(l,t)

∂x2 = 0 (3)

and the initial conditions are:

u(x, 0) = Φ0(x),
∂u(x, 0)

∂t
= Φ1(x). (4)

3. Cases of the local increase of stress

3.1. The case of a fracture

We shall seek solutions of the above mentioned initial-
boundary problems in the class of generalized functions
(di�erentiation in the distribution sense) [7�9]. As for
functions J(x) and F (x) we make the following assump-
tions:

J(x) = J0(1 + γ1H(x1, x2)), x ∈ 〈0, l〉, (5)

F (x) = F0(1 + γ2H(x1, x2)),

x ∈ 〈0, l〉, x0 ∈ 〈0, l〉, (6)

where: −1 < γi ≤ 0, i = 1, 2, H(x1, x2) = H(x − x1) −
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H(x−x2), x1 = x0− ε, x2 = x0 + ε, ε > 0, H(x−a) = 1
for x > a, H(x − a) = 1

2 for x = a, H(x − a) = 0 for
x < a, J0 is the cross-section moment of inertia and F0

is the cross section area.

Due to the form of functions Eqs. (5) and (6) we will
write (2) in the form (Refs. [10] p. 173, [6] p. 94)

M(x) = E
∂

∂x

[
J(x)

(
∂u

∂x
+
α0

E

∂2u

∂x∂t

)]
. (7)

Putting Eq. (7) into Eq. (1) and taking Eqs. (5) and
(6) into account we obtain:

EJ0
∂3

∂x3

{[
1 + γ1H(x1, x2)

](∂u
∂x

+
α0

E

∂2u

∂x∂t

)}
+

ρF0

[
1 + γ2H(x1, x2)

]
∂2u

∂t2
= q(x, t). (8)

Let consider Eq. (6) with boundary conditions Eqs. (3)
and (4) describing the initial-boundary problem for Eu-
ler's beam assuming a fracture at the point x0. To solve
this problem it is convenient to use the method of sepa-
ration of variables:

u(x, t) = X(x)T (t) (9)

Inserting Eq. (9) in Eqs. (6) and Eq. (3) for q(x, t) ≡ 0,
after standard transformations we obtain

−
EJ0

d3

dx3 {[1 + γ1H(x1, x2)]X ′(x)}
ρF0(1 + γ2H(x1, x2))X(x)

=
T̈

T + α0

E Ṫ
=

−ω2 (10)

and from Eq. (3) it follows that

X(0) = X(l) = 0, X ′′(0) = X ′′(l) = 0. (11)

Hence

T̈ + ω2α0

E
Ṫ + ω2T = 0 (12)

EJ0
d3

dx3
{[1 + γ1H(x1, x2)]X ′(x)}

+ρF0(1 + γ2H(x1, x2))X(x)ω2 = 0. (13)

Function Eq. (5) does not involve structural damping
constant α0 so eigenfrequencies (eigenvalues) do not de-
pend on α0. Equation (13) and conditions Eq. (11) rep-
resent the eigenproblem of a beam with a fracture at the
point x0. Di�erentiated three times equation Eq. (13)
will take the form (Refs. [9] p. 76, [6] p. 123):

EJ0
{
− γ1(X ′(x2)δ′′(x− x2)−X ′(x1)δ′′(x− x1))

−γ1(X ′′(x2)δ′(x− x2)−X ′′(x1)δ′(x− x1)

−γ1(X ′′′(x2)δ(x− x2)−X ′′′(x1)δ(x− x1))

+X ′′′′(x) + γ1H(x1, x2)X ′′′′(x)
}

−ρF0(1 + γ2H(x1, x2))X(x)ω2 = 0. (14)

Lemma 1. For su�ciently small ε > 0 we have:



X ′(x0 + ε)δ′′(x, x0 + ε)−X ′(x0 − ε)δ′′(x, x0 − ε) ∼=
(X ′(x0 + ε)−X ′(x0 − ε))δ′′(x− x0),

X ′′(x0 + ε)δ′(x, x0 + ε)−X ′′(x0 − ε)δ′(x, x0 − ε) ∼=
(X ′′(x0 + ε)−X ′′(x0 − ε))δ′(x− x0),

X ′′′(x0 + ε)δ(x, x0 + ε)−X ′′′(x0 − ε)δ(x, x0 − ε) ∼=
(X ′′′(x0 + ε)−X ′′′(x0 − ε))δ(x− x0),

H(x1, x2)X(x) = (H(x0 − ε)−H(x0 + ε))X(x) ∼=
X(x0)δ(x− x0), (15)

where: δ′′ is the second derivative of δ and X ′, X ′′, X ′′′

are derivatives of function X(x) (Eq. (9)).

Lemma 2. For su�ciently small η > 0

(H(x0 − η)−H(x0 + η))X ′′′′(x) =

γ1
1 + γ1

σ3(x0)δ(x− x0), (16)

where −1 < γ1 ≤ 0, σ3 is de�ned in Eq. (24).

The known formulae (Ref. [9] p. 76, 85) are used in
the proofs of Lemma 1 and 2:

α(x)δ(x− x0) = α(x0)δ(x− x0),

α(x)δ′(x− x0) = α′(x0)δ(x− x0) + α(x0)δ′(x− x0),

α(x0)δ′′(x− x0) = α′(x0)δ(x− x0)

×− 2α′(x0)δ′(x− x0) + α(x0)δ′′(x− x0), (17)

where α is of an appropriate regularity. For su�ciently
small ε > 0, for any test function ϕ we have ϕ′′(x0±ε) ∼=
ϕ′′(x0)± ϕ′′′(x0) · ε, while ϕ′′′(x0) · ε→ 0 when ε→ 0.

The proof of the �rst formula in Lemma 1, Eq. (15)

Multiplying both sides of the aforementioned equation
by test function ϕ(x) and integrating, we obtain∫

R

(
X ′(x0 + ε)δ′′(x, x0 + ε)−X ′(x0 − ε)

×δ′′(x, x0 − ε)
)
ϕ(x)dx ∼=

∫
R

(
X ′(x0 + ε)

−X ′(x0 − ε)δ′′(x, x0 + ε)
)
δ′′(x− x0)ϕ(x)dx. (18)

Using the equalities (17) in (18) we obtain the following
identity:

(X ′(x0 + ε)−X ′(x0 − ε))ϕ′′(x0) ≡

(X ′(x0 + ε)−X ′(x0 − ε))ϕ′′(x0). (19)

As it folllows from Eq. (23) function X ′(x) is continuous
in the neighbourhood of x0 and Eq. (19) holds for every
ϕ′′, q.e.d.

The remaining equations Eq. (15) can be proved in the
same way.

The proof of Lemma 2
The proof of Eq. (16) consists in using the formula:
X(i)(x0 ± ε) ∼= X(i)(x0) ± X(i+1)(x0)ε, (i = 0, 1, 2, 3).
Deriving equations for eigenvalues λ, we execute a stan-
dard procedure using the boundary conditions Eq. (3),
the solution of X(x) in the form Eq. (23), the derivatives
X(i)(x), (i = 1, 2), and the equation Eq. (24).

We multiply both sides of the equation Eq. (16) by the
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test function ϕ(x), H(x1, x2) = H(x0 − ε) − H(x0 + ε)
and integrate the result in the interval (x0 − ε, x0 + ε).
Then we use the �rst three equations (17) and obtain

x0+ε∫
x0−ε

(H(x1, x2)(1 + γ1)X ′′′′(x)− γ12σ3(x0))

×δ(x− x0)ϕ(x)dx ∼= 0. (20)

As the component
x0+ε∫
x0−ε

X(x)H(x1, x2)ϕ(x)dx ∼= 0

is very small and therefore can be neglected, whereas we
know that Eq. (20) holds for every ϕ, which means that

H(x1, x2)X ′′′′(x) ∼=
2γ1

1 + γ1
σ3(x0)δ(x− x0), (21)

q.e.d.

Due to Eqs. (15) and (16), equation (14) will take the
form

X ′′′′ − λ4X = −γ1
[
σ1(x0)δ′′(x− x0) + σ2(x0)

×δ′(x− x0) +
1

1− γ1
σ3(x0)δ(x− x0)

]
, (22)

where: λ4 = ρF0ω
2

EJ0
, σi(x0) = X(i)(x0 + ε) − X(i)(x0 −

ε), i = 1, 2, 3.

Solution of Eq. (22) can be expressed by the formula

X(x) = P cosλx+Q cosλx+R coshλx+ S sinhλx

+γ1

{
σ1(x0)

2λ

[
sinhλ(x− x0) + sinλ(x− x0)

]
+

+
σ2(x0)

2λ2

[
coshλ(x− x0)− cosλ(x− x0)

]
+

+
1

1 + γ1

σ3(x0)

2λ3

[
sinhλ(x− x0)− sinλ(x− x0)

]}
×H(x− x0), (23)

where

σ1(x0) =
X ′0(x0)

1− γ1d1
, σ2(x0) =

X ′′0 (x0)

1− γ1d2
σ3(x0) =

1 + γ1
1 + γ1(1− d3)

X ′′′0 (x0), (24)

and X0(x) = P cosλx+Q sinλx+R coshλx+S sinhλx,
−1 < γ1 ≤ 0.

By Eq. (11), P = R = 0 while the remaining constants
Q and S satisfy the equation[

a11a12
a21a22

][
Q

S

]
=

[
0

0

]
, (25)

where:

a11 = sinλl +
γ1

2λ(1− γ1)

{
cosλx0

[
sinhλ(l − x0)

+ sinλ(l − x0)
]
− 1

λ
sinλx0

[
coshλ(l − x0)

− cosλ(l − x0)
]

+
1

λ2
(1− γ1) cosλx0

×
[

sinhλ(l − x0)− sinλ(l − x0)
]}
,

a12 = sinhλl +
γ1

2λ(1− γ1)

{
coshλx0

[
sinhλ(l − x0)

+ sinλ(l − x0)
]

+
1

λ
sinhλx0

[
coshλ(l − x0)

− cosλ(l − x0)
]

+
1

λ2
(1− γ1) coshλx0

×
[

sinhλ(l − x0)− sinλ(l − x0)
]}
,

a21 = − sinλl +
γ1

2λ(1− γ1)

×
{

cosλx0

[
sinhλ(l − x0)− sinλ(l − x0)

]
− 1

2λ
sinλx0

[
coshλ(l − x0)− cosλ(l − x0)

]
+

1

λ2
(1− γ1)

[
sinhλ(l − x0) + sinλ(l − x0)

]}
,

a22 = sinhλl +
γ1

2λ(1− γ1)

{
coshλx0

[
sinhλ(l − x0)

− sinλ(l − x0)
]

+
1

λ
sinhλx0

[
coshλ(l − x0)

+ cosλ(l − x0)
]

+
1

λ2
(1− γ1) coshλx0

×
[

sinhλ(l − x0) + sinλ(l − x0)
]}
.

The equation for eigenvalues takes the form:

det

[
a11a12
a21a22

]
= 0. (26)

From the form of the terms aij it is clear that eigenval-
ues λ depend on γ1. The adopted model will be correct if

0 < λn(γ1) <
πn

l
, n ∈ N, (27)

where πn
l are eigenvalues of beam without fractures.

3.2. The case of a local increase of the bending torque
caused by the internal forces

In this case we will use a discrete-continuous system
presented in Fig. 1, where q(x, t) is a generalized exter-
nal load; elasticity coe�cients k and k1 must not be too
high, because otherwise local sti�ening would take place.
Since the problem of eigenvalues is considered, structural
damping of the system is omitted.

If the internal forces in the springs satisfy the equation

ku(x0 − ε, t) + ku(x0 + ε, t) = k1(y(t)− u(x0, t)),

0 < ε < 1, (28)

these forces do not change the response of the supports.

The mathematical description of the initial-boundary
problem associated with the model in Fig. 1 is presented
by the system of equations (Ref. [6] p. 102)
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Fig. 1. Model of the system.



EJ ∂
4u
∂x4 + %F ∂2u

∂t2 − k1(y − u(x0t))δ(x− x0)

+ku(x1, t)δ(x− x1) + ku(x2, t)δ(x− x2)

= q(x, t),

mÿ + k1(y − u(x0, t)) = 0

x1 = x0 − ε, x2 = x0 − ε,
0 < ε arbitrarily small,

(29)

with the boundary conditions

u(0, t) = u(l, t) = 0,

∂2u(o, t)

∂x2
=
∂2u(l, t)

∂x2
= 0, (30)

and the initial conditions

u(x, 0) = ϕ0(x),
∂u(x, 0)

∂t
= ϕ1(x). (31)

Let us assume that

u(x, t) = X(x)T (t), y(t) = AT (t). (32)

Due to Eq. (31), after standard transformations, equa-
tions Eq. (29), with q(x, t) ≡ 0, conditions Eq. (32) and
condition Eq. (28) will take the form

T̈ + ω2T = 0, (33)

X ′′′′ − λ4X = − k1
EJ

(A−X(x0)δ(x− x0))

+
k

EJ
[X(x1)δ(x− x1) +X(x2)δ(x− x2)] , (34)

where

λ4 =
%Fω2

EJ
, k1

A−X(x0)

mA
= ω2, or

A =
ω2
0X(x0)

ω2
0 − ω2

, ω2
0 =

k1
m
, (35)

X(0) = X(l) = 0, X ′′(0) = X ′′(l) = 0, (36)

wherein was assumed that

X(x1) +X(x2) = 2X(x0), x1 = x0 − ε,
x2 = x0 + ε, ε > 0 −− arbitrarily small. (37)

From Eqs. (35), (37), and the formula Eq. (28) it fol-
lows that

k

k1
= −1

2

ω2

ω2
0 + ω2

. (38)

The above formula represents the relationship between
k, k1, and m. Reasoning along the same line as in the
proof of Lemma 1, we shall obtain

X(x0 − ε)δ(x0 − ε) +X(x0 + ε)δ(x0 + ε) ∼=

(X(x0 − ε) +X(x0 + ε))δ(x− x0). (39)

Due to Eqs. (37) and (39), Eq. (34) will assume the form

X ′′′′ − λ4X =
k1X(x0
EJ

ω2
0

ω2
0 − ω2

δ(x− x0),

ω2
0 =

k1
m
. (40)

The general solution of Eq. (40) has the form

X(x) = Q sinλx+ S sinhλx+
k1

2EJλ3
ω2
0

ω2
0 − ω2

X(x0)

×
[

sinhλ(x− x0)− sinλ(x− x0)
]
H(x− x0) (41)

From Eqs. (40) and (36), we obtain

Q sinλl + S sinhλl + k1
2EJλ3

ω2
0

ω2
0−ω2X(x0)

×
[

sinhλ(l − x0)− sinλ(l − x0)
]

= 0,

−Q sinλl + S sinhλl + k1
2EJλ3

ω2
0

ω2
0−ω2X(x0)

×
[

sinhλ(l − x0) + sinλ(l − x0)
]

= 0.

(42)

By Eq. (41)

X0(x0) = Q sinλx0 + S sinhλx0, (43)

hence from Eq. (42) we obtain the equations for eigen-
values∣∣∣∣∣ b11b12b21b22

∣∣∣∣∣ = 0, (44)

where

b11 = sinλl +
k1

2EJλ3
sinλx0

ω2
0

ω2
0 − ω2

×[sinhλ(l − x0)− sinλ(l − x0)],

b12 = sinhλl +
k1

2EJλ3
sinhλx0

ω2
0

ω2
0 − ω2

×[sinhλ(l − x0)− sinλ(l − x0)],

b21 = − sinλl − k1 sinλx0
2EJλ3

sinλx0
ω2
0

ω2
0 − ω2

×[sinhλ(l − x0) + sinλ(l − x0)],

b22 = sinhλl +
k1 sinhλx0

2EJλ3
sinλx0

ω2
0

ω2
0 − ω2

×[sinhλ(l − x0) + sinλ(l − x0)].

The form of the terms of determinant Eq. (44) shows
that λn = λn(k1). If it turns out that

λn(k1) <
πn

l
, (45)

then the adopted model presented in Fig. 1 is correct.

We can summarize the conclusions as follows:

• Replacing the formula (2) with Eq. (7) turned out
to be a more general approach to problems of this
kind. The obtained equation (24) of eigenfunctions
includes the existing torque and transverse force at
the point of fracture x0 and the local deformation
of the beam axis in the neighbourhood of x0.
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• If γ1 → −1, then equation (24) becomes the equa-
tion of the beam with a point joint at the point
x0 [5].

• In the existing literature of this subject numerical
calculations are executed for n = 1. Demonstration
of the decreasing character of λn(γ1) and λn(k) in
relation to πn

l , at least for n = 1, would prove
that the models described in the present work are
correct and equivalent to each other.

4. Conclusions

This paper presents analytical solutions of the free vi-
bration problems for a simply supported beam with lo-
cal increase of sti�ness. Knowing the eigenfuctions and
boundary conditions we can determine a system of al-
gebraic equations for the eigenvalues that are di�erent
from the eigenvalues of the beam without local stress
distribution. The advantage of this approach consists in
compact mathematical description. Results can be useful
for testing the approximate solutions obtained by other
methods.
Since the equations of eigenvalues have been derived,

the goal of the study has been achieved. The models
under consideration will be equivalent if the roots of the
equations are identical or di�er slightly. On the other
hand, the models under consideration will be correct if
their zero points (at least the �rst few) are smaller than

the eigenvalues of the beam of a constant diameter, πnl
(n = 1, 2, . . . l � beam length).
The answers to the questions posed above may be ob-

tained either theoretically or with the help of computed
analysis for given parameters. These answers will be the
subject of a subsequent study.
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