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Distribution of Random Pulses Forcing a Damped Oscillator

Determined in a Finite Time Interval

A. Ozga∗

AGH University of Science and Technology, Faculty of Mechanic Engineering and Robotics,

Department of Mechanics and Vibroacoustics, Al. A. Mickiewicza 30, 30-059 Krakow, Poland

Solving a stochastic problem for systems subjected to random series of pulses is, in the present case, aimed at
determining of an approximate distribution of amplitudes of random pulses forcing vibrations of an oscillator with
damping. The applied model of investigations indicated the source of di�culties connected with interpretation of
the obtained results. Another issue discussed in the paper is how a change of the damping coe�cient b of the system
may result in a decrease of the di�erence between the actual distribution of random pulses and that determined
from the waveform.
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1. Introduction
Theoretical and experimental [1] analyses of models

of vibrating systems [2] as well as methods used to
control such systems [3] are among the topics of re-
search projects [4] carried out in academic centers in
Poland [5]. The studies conducted by researchers deal not
only with the analysis of vibrations aimed at preventing
resonance [6] or degradation of machinery [7], but include
also application of numerical analyses [8] of in�uence of
the shapes of piezoelements [9] on their e�ciency as vi-
bration reducing actuators [10�11]. The examples listed
above refer both to the basic research [8�11] where the
teams strive to discover the hitherto unknown interde-
pendencies, and the applied studies oriented at practical
applications [1�7].
The considerations presented in this paper dealing with

the issue of determining the distribution of stochastic
pulses [12] acting on a damped oscillator by way of anal-
ysis of a single waveform representing its motion [13],
refers to the basic studies having, however, certain ap-
plication potential. The mathematical model discussed
in papers [12�18] allows to compute the distribution of
probability for t → ∞. In technological applications
we should take into account a �nite time interval which
means that the distribution determined from a waveform
will be biased with an error. The analyses of causes of er-
rors and minimization of their negative e�ects have been
carried out on the basis of computer simulations.
2. Parameters and description of simulations
Simulation discussed in this paper were carried out for

a one-dimensional physical system [12] the state of which
is described by means of a single parameter x

x(t) =
∑

0<ti<t

ηi
c

e−b(t−ti) sin
(√

a2 − b2(t− ti)
)
, (1)

where the force f(t) exciting vibrations of the system is
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de�ned as a series of random pulses with amplitudes ηi
occurring at random instants of time ti:

f(t) =
∑
ti<t

ηiδ(t− ti). (2)

The intervals between the pulses and amplitudes of the
pulses are independent random variables [13]. Depend-
ing on the context, three distributions Φi of the pseudo-
random variable ηi are considered in this paper:

1. Φ1: p(η1) = 0, p(η2) = 1, p(η3) = 0;

2. Φ2: p(η1) = 0.33, p(η2) = 0.33, p(η3) = 0.34;

3. Φ3: p(η1) = 0.4767, p(η2) = 0, p(η3) = 0.5233.

Another assumption made in the model consists in that
distributions of random variables which are time intervals
(ti−ti−1) between podsequent pulses have the same expo-
nential distribution F (x) and these variables are stochas-
tically independent, namely

F (τ) =

{
1− exp(−λτ) if τ ≥ 0,

0 if τ < 0,
(3)

where the constant λ is the pulse occurrence fre-
quency. Taking into account one-dimensional sys-
tems [14], recording the time of occurrence and ampli-
tude of the pulsed action, and neglecting the place of the
pulse, we are able to explain the causes of the problems
connected with interpretation of the obtained results for
di�erent pulse occurrence frequencies λ [15] equal to 10,
102, 103, and 104 s−1.
In order to execute a simulation for a single realiza-

tion, it is necessary to sample podsequent values of ηi
as well as podsequent time intervals (ti − ti−1) between
the pulses [16] for a selected or given distribution Φi and
in accordance with a selected or given pulse occurrence
frequency λ. Then, putting the sampled values in (1), we
calculate x(t) which allows to determine stochastic mo-
ments mn(t) and the distribution of pulses p̃i(t) which
was described in detail in papers [12�14, 17].
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Simulation studies regarding the oscillator were ex-
ecuted for RLC systems [15]. The parameters a =
300179.47 and b = 8280.97 and η assumed three ampli-
tude values, η1 = 845, 778.47, η2 = η1/2, and η3 = η1/10
were approximated from the response of the system to a
single pulse [16]. The methods of approximation are pre-
sented in [18]†. Simulations as well as calculations were
carried out in MATLAB environment [19].

3. Methods of investigations

Let p̃i(t)denote the distribution which is recorded from
the waveform, and pi � the distribution imposed in sim-
ulation, while the index i denotes reference to the pulse
of a given amplitude � e.g., p1(t) is calculated for the
pulse η1.

The di�erences p̃i(t)−pi are too strongly in�uenced by
the properties of the generator of pseudorandom numbers
with uniform distribution used in the investigations. In
MATLAB environment, in which the investigations were
conducted, achieving probability with the assumed pre-
cision of 10−4 is possible only for 109 elements in a statis-
tic sample. For low pulse occurrence frequency values, it
would require too long time interval to be analyzed.

Hence, in the study we look for the most important
causes of the occurrence of deviations p̃i(t)− p̄i(t), where
p̄i(t) is the distribution executed by the generator of
pseudorandom numbers � calculated separately for each
of the generated realizations.

3.1. The results of analysis related to pulse occurrence
frequency

Neglecting the details regarding the changes that oc-
cur depending on amplitude of a pulse, examining the
distribution Φ1 including only the pulses of the ampli-
tude η2 we can analyze the di�culties connected with
interpretation of the obtained results depending on the
pulse occurrence frequency.

Fig. 1. The waveform, pulses, and estimators p̃2 cor-
responding to Φ1, λ = 102 s−1.

†The above-mentioned parameters applied in the simulations

discussed in this paper are connected with the system consisting of

inductivity L = 5mH, capacity C = 2 nF, and a voltage source. All

the elements were connected in series, and the resistance R came

from the physical components making up the circuit.

The �rst issue that deserves attention is the fact that
while analyzing a single waveform, one should not deter-
mine the distributions of pulses at certain constant points
of time, but at certain time intervals with breaks between
them, because at the moment when a pulse occurs, the
di�erence p̃i(t)− p̄i(t) increases (Fig. 1). Additionally, if
two pulses occur in such a short period of time that the
vibrations will not disappear, the changes that occur in
the system increase the di�erences p̃i(t)− p̄i(t) (Fig. 2).

Fig. 2. The di�erence p̃2(t) − p̄2(t) for the vibrations
presented in Fig. 1.

The idea of constructing a mathematical model con-
sisted in recording a single waveform, but it is neces-
sary to execute statistical analysis to recognize how long
the time interval should be in order to reduce the error
issuing from the occurrence of another pulse at a de�-
nite time-point to minimum. Therefore, 100 independent
waveforms were generated for each of the three distribu-
tions Φi and for λ = 10, 102, 103, and 104 s−1 which gives
the total of 12 analyzed cases. The obtained di�erences
p̃i(t)−p̄i(t) were grouped into histograms which, with the
passage of time come close to the Gaussian distribution,
indicated by the following indices of descriptive statis-
tics: mean value, median, standard deviation, kurtosis,
and skewness. The indices characterize the collected data
in the aspect of the most probable value, the spread of
this value, and the shape of the histogram, indicating, at
the same time, the di�culty at interpreting the obtained
results. These histograms for t = 300, 600, and 900 s are
presented in the following �gures.

Fig. 3. Histograms p̃2(t) − p̄2(t) corresponding to Φ1

and λ = 10 s−1.

Fig. 4. Histograms p̃2(t) − p̄2(t) corresponding to Φ1

and λ = 102 s−1.
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Fig. 5. Histograms p̃2(t) − p̄2(t) corresponding to Φ1

and λ = 103 s−1.

For low pulse occurrence frequency values, the di�-
culties described above occur during the whole analyzed
time interval, hence the standard deviation of p̃2(t)−p̄2(t)
determined in the statistical studies for 100 independent
waveforms for λ = 10 s−1 (Fig. 3, Fig. 6) is higher than
the standard deviation determined for the pulse occur-
rence frequency λ = 102 s−1 (Fig. 4, Fig. 6), but lower
than the standard deviation determined for λ = 104 s−1

(Fig. 5, Fig. 6).

Fig. 6. The standard deviation of p̃2(t) − p̄2(t) deter-
mined in statistical investigations for 100 independent
waveforms for λ = 10, 102, 103, 104 s−1 corresponding
to Φ1.

Fig. 7. Histograms p̃2(t) − p̄2(t) corresponding to Φ1

and λ = 104 s−1.

Further di�culties in interpretation of the obtained re-
sults can be studied while comparing the data presented
in diagram 7:

• For λ = 102 s−1, the standard deviation of p̃2(t)−
p̄2(t) does not always decrease with the passage of
time, e.g. it is higher for t = 360 s than for t =
300 s;

• For t =300 s, the standard deviation of p̃2(t)− p̄2(t)
for λ = 10 s−1 is higher than the standard deviation
computed for λ = 102 s−1 and for λ = 103 s−1,
while for t = 720 s, the trend is opposite.

In turn, for high occurrence frequencies λ on the basis
of an analysis of a single waveform (Fig. 8) it can be

Fig. 8. The waveform, pulses and di�erence p̃2(t) −
p̄2(t) corresponding to Φ1, λ = 104 s−1.

seen that the in�uence of a single pulse is lower, but
the absolute value of the di�erence p̃i(t)− p̄i(t) is higher
than that for low pulse occurrence frequencies. Hence the
standard deviation of p̃2(t)− p̄2(t) determined in statisti-
cal analyses for 100 independent waveforms λ = 104 s−1

(Fig. 5, Fig. 6) is higher than the standard deviation of
p̃2(t) − p̄2(t) determined for the frequency λ = 103 s−1

(Fig. 7, Fig. 6).
It is worth noticing that for high pulse occurrence fre-

quencies λ it often happens that the podsequent pulses
damp the vibrations of the system evoked by previous
pulses (Fig. 8, t = 2.1815 s). Hence, the higher the
pulse frequency, the slower the standard deviation of
p̃2(t)− p̄2(t) decreases (Fig. 6).

3.2. The results of analysis related to pulse amplitudes

The changes that occur depending on the amplitude
of a pulse may be studied while examining the distri-
bution Φ2 analyzing a single waveform and carrying out
statistical analysis. Figure 9 allows to draw conclusions
independently of the pulse occurrence frequency.

Fig. 9. (a) The waveform and pulses corresponding to
Φ2, λ = 103 s−1, (b) The di�erence p̃i(t) − p̄i(t) corre-
sponding to vibration presented in part (a).

• The strongest pulses are the cause of the largest
di�erence p̃i(t)− p̄i(t).

• Independently of the amplitude of the pulse λi,
the di�erence p̃3(t) − p̄3(t) is the highest while
p̃1(t) − p̄1(t) is the lowest, which is con�rmed by
the histograms (Figs. 10, 11).
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Fig. 10. Histograms p̃i(t) − p̄i(t) corresponding to Φ2

and λ = 10 s−1.

Fig. 11. Histograms p̃i(t) − p̄i(t) corresponding to Φ2

and λ = 104 s−1.

3.3. The greatest di�culty connected with interpretation
of the obtained results

Comparing the standard deviation of p̃i(t) − p̄i(t)
determined for 100 independent waveforms and three
distributions Φ1, Φ2, Φ3, contradictory results are
obtained, which constitutes the greatest di�culty
connected with interpretation of the obtained results
(Fig. 12).

Fig. 12. The standard deviation of p̃i(t) − p̄i(t) corre-
sponding for A1, B1 and C1 to λ = 10 s−1; for A2,
B2 and C2 to λ = 102 s−1; for A3, B3 and C3 to
λ = 102 s−1, where the letter A denotes distributions
Φ1, B � distributions Φ2 and C � distributions Φ3.

It is hard to �nd the interrelations σ(p̃i(t)− p̄i(t)) and
the pulses of the given amplitude ηi depending on the
distribution, for instance:

1. for σ(p̃1(t) − p̄1(t)), the highest bars are marking
the distribution Φ3 � the distribution in which the
largest number of pulses η1 occurs;

2. for σ(p̃2(t) − p̄2(t)), the tallest bars correspond to
the distribution Φ2 � the distribution in which the
largest number of pulses η2 occurs,

while

3. σ(p̃3(t)− p̄3(t)) varies depending on time and pulse
occurrence frequency.

The above-discussed interdependence between the stan-
dard deviation of p̃i(t) − p̄i(t) for di�erent λ does not
allow to �nd interrelations (Fig. 12), e.g., for t = 540 s
and for the di�erence p̃3(t)− p̄3(t), the maximum σ was
determined for λ = 102 s−1 compared to λ = 103 s−1 for
t = 660 s.
Similarly, there seems to be no dependence between the

standard deviation of p̃i(t) − p̄i(t) for di�erent distribu-
tions, e.g., for t = 420 s, for both λ = 10 and λ = 102 s−1

the highest bars represent the distribution Φ2, while for
λ = 103 s−1 the highest bar corresponds to Φ3.
In view of the above, it is impossible to assess how long

the waveform taken into consideration should be in order
to prevent the di�erence p̃1(t) − p̄1(t) from increasing
dramatically when the podsequent pulses occur.
And yet the scienti�c research shows that there are

two possible ways of interfering with the algorithm de-
termining the distributions of pulses. If we supplement
the algorithm computing p̃i(t) with a condition that the
measuring system should delay calculation of distribu-
tions until the absolute value of deviation x(t) of the
oscillator is low, e.g., lower than 0.001, we shall obtain
results that eliminate the largest di�erences p̃i(t)− p̄i(t).
For low frequency of occurrence of the hits, introduction
of this additional condition will be more signi�cant than
for high pulse occurrence frequencies. The other possible
way of interfering will be discussed in the next paragraph.

4. Decreasing the di�erence between the actual

distribution of pulses and that determined from

waveforms through increasing the damping

coe�cient b

In order to check in what way a change of parame-
ters of the vibrating system in�uences the precision of
the calculated distributions, in this section we change
the damping coe�cient b by increasing it ten times up
to the value 82,809.7. Using the �les generated for the
distribution Φ2 including the times of action ti and pulse
amplitudes ηi, we will compute p̃i(t) − p̄i(t) once more.
The remaining parameters of the simulation: coe�cient
a, as well as pulse amplitudes η1, η2, and η3 remain un-
changed. The results of the simulations are presented in
the histograms below.
The indices of descriptive statistics calculated in this

section: mean value, median, standard deviation, kurto-
sis, and skewness indicate that the examined di�erences
p̃i(t)− p̄i(t) are better for the systems with strong damp-
ing that for those with weak damping (compare Fig. 10
with Fig. 13 and Fig. 11 with Fig. 14). The histograms
show the results for the lowest and the highest of the
considered pulse frequencies λ; the remaining cases for
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Fig. 13. Histograms p̃i(t) − p̄i(t) corresponding to Φ2

and λ = 10 s−1. 100 distributions forced by the same
pulses at the same time as the distributions presented in
Fig. 10, but for the damping coe�cient of the vibrating
system, b = 82, 809.7, increased 10 times.

Fig. 14. Histograms p̃i(t) − p̄i(t) corresponding to Φ2

and λ = 104 s−1. 100 distributions forced by the same
pulses at the same time as the distributions presented in
Fig. 10, but for the damping coe�cient of the vibrating
system, b = 82, 809.7, increased 10 times.

di�erent pulse occurrence frequencies (Fig. 15) and dif-
ferent distributions con�rm the above conclusions.
Unfortunately, analysis of the data included in Fig. 15

will not lead to answering the question in what way
the pulse occurrence frequency should be related to the
length of the time interval necessary Again, certain in-
consistencies are found here, for example when t = 720 s,
for determining the distributions. σ(p̃2(t) − p̄2(t)) for

Fig. 15. The standard deviation of p̃i(t) − p̄i(t) deter-
mines in statistical investigations for 100 independent
waveforms for λ = 10, 102, 103, 104 s−1 corresponding
to Φ2.

λ = 10 s−1 is the highest, but when t = 840 s, it is
the lowest. The change of the parameters of a vibrat-
ing system will not change the di�culties issuing from
the analysis of the systems subjected to random series of
pulses; it will merely decrease the di�erence between the
distribution recorded from the waveform and that which
actually has forced this waveform.

5. Summary

The applied model of investigations has pointed out
the source of di�culties connected with interpretation
of the obtained results. The decrease of the di�erence
between the distribution of hits that forced vibrations of
the system and the distributions determined from a single
waveform is possible by way of increasing the damping
coe�cient.
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