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An analytical solution is obtained, based on linear quadratic problem well-known in the control theory. The
problem is formulated for �xed-free beam vibration (fourth order partial di�erential equation) in Hilbert space and
the point control and distributed output is considered. Beam de�ection at any point is chosen as a criterion of
optimization. In this case it means the linear quadratic problem. Up to now, the linear quadratic problem was
formulated many times, but only for the time-dependent equation. The aim of the paper is to obtain the value
of the cost functional formulated as the function of distribution of actuators. The minimum of this function leads
to the optimal actuators location. The results obtained with this method con�rm the results obtained in heuristic
way and pure analytical one for separate mode; it is pointed out that the actuators ought to be bonded on the
beam sub-regions in which the mode curvatures take their local maximums and the highest value.
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1. Introduction

The p-reduction is possible for separate mode and it
is realized with actuators [1�4]. The quantity of the re-
duction depends on many factors [5�10]; they are enu-
merated in [3]. It seems that the most important is an
optimal distribution of actuators on the structure [5, 6].
A lot of optimization techniques are distinguished; an
excellent survey of them may be found in [11] and is re-
peated in [3]. Two main approaches to this problem are
classi�ed. In one of these approaches optimization cri-
teria depend on the choice of controllers/control and in
this case the quadratic cost functional of the measure er-
ror and the control energy (cf. e.g. [12]) is taken into
account. This is the approach nearest to the considered
in this article.

In the quoted references, it was not provided the actu-
ators distribution in explicit; only general rules (criteria)
were formulated. However, considering e�ectiveness of
the p-reduction as the criterion, this problem has been
already solved. First, based on the heuristic observa-
tions [1, 13], it was deduced that the most e�ective dis-
tribution of actuators was on the structure sub-domains
with the largest curvatures and the highest value of the
curvature; such distribution is called the quasi-optimal
(QO) one. Next, this result was con�rmed in analytical
way [2]. Since then, such distribution may be regarded as
optimal (O) one. It is worth stressing that even one actu-
ator bonded anywhere on the beam provides p-reduction
but the e�ectiveness is poor [1].
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In the paper, based on linear quadratic (LQ) problem
formulated in the control theory [14], an analytical solu-
tion of the above problem is also achieved. The boundary
problem is formulated for beam vibration in an abstract
Hilbert space and is considered the point control and
distributed output. As a criterion, minimization of beam
de�ection at any point is chosen. In this case it means
the optimization LQ problem. To our knowledge, up to
now, the LQ problem was formulated many times, e.g.
in [11, 12, 15], but for time-dependent equation.
The aim of the present paper is to �nd the value of the

(quadratic cost) functional for the special control ft and
then to derive the minimum of the function. Finally it
leads to the optimal distribution of actuators. As can be
seen, the aim is neither �nding an optimal control nor an
optimal regulator.
The results obtained with this method con�rm the re-

sults obtained on the analytical way for separate mode
presented in [2, 4]. To the authors' knowledge, such prob-
lem has not been considered yet.

2. Beam forced vibration with damping and

p-reduction by actuators

This theory is repeated after papers [3, 4]. Let the
beam be clamped at one side; geometrical data of the
beam are: ` � length, S � area of the cross-section, qE =
qE(x, t) � distributed load force. The beam vibration
equation is

EJ
(
D4
xu+ µD4

x(Dtu)
)
+ ρSD2

t u = −qE , (1)

where u = u(x, t) is the beam de�ection at the point x
and the moment t, E is the Young modulus, J is the
surface moment of inertia of the beam cross-section, ρ
is the mass density, µ is the internal damping factor,
D4
x(·) = ∂4(·)/∂x4, and Dt(·) = ∂(·)/∂t.
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The boundary conditions are described by the follow-
ing equations:

u(x = 0, t) = 0, Dxu(x = 0, t) = 0, (2)

D2
xu(x = `, t) = 0, D3

xu(x = `, t) = 0. (3)

Besides, initial conditions are assumed to be equal to
zero, i.e. u0 = {u(0, x) = 0, Dtu(0, x) = 0}. The solu-
tion of the formulated problem represents forced har-
monic vibrations with damping. Let the lateral load
force qE(x, t) = qE(x) exp(iωqt), where ωq is the angular
frequency. The solution of the above problem, for the
steady-state case, can be proposed, after [3, 4] as

u(x, t) = X(x) exp(iωqt), (4)

where

X(x) =
∑
ν

CνXν(x) =
∑
ν

Xq;ν(x),

ν = 1, 2, . . .∞, (5)

where Cν are certain constants, Xν(x) are ν-modes
(eigenfunctions), and

Xν(x) = K1(λν`)K2(λνx)−K4(λν`)K3(λνx), (6)

where {K1(z),K2(z),K3(z),K4(z)} are the Krylov func-
tions [3, 4] and, {λν} is a set of eigenvalues: {λν`} =
{1.8751, 4.6941, . . . , (2ν−1)π/2}. To obtain Xν(x) given
by Eq. (6), boundary conditions given by Eqs. (2) and
(3) have been used.

The constants Cν are expressed by

Cν =
1

(1 + iµωq)ω2
ν − ω2

q

Dν =
1

α2
ν

Dν =

1

α2
ν

1

ρS

1

β2
ν

Iν;E = C∗νIν;E , (7)

C∗ν =
1

α2
ν

1

ρS

1

β2
ν

, Iν;E = −
∫ `

0

qEXν(x)dx,

ω2
ν =

EJ

ρS
λ4ν , β2

ν =

∫ `

0

X2
ν (x)dx. (8)

The problem of the beam vibration with damping and,
excitation given by qE(x, t) is thus solved.

Fig. 1. Interaction actuator-beam.

Adding an e�ect of actuators on the beam in active vi-
bration reduction, the total load is the sum of qE(x, t)and
the forces interacting between actuators and the beam,
Fig. 1, and is given by [2�4]:

f(x) = −qE +
∑
a

[
faδ(x− x1a)− 2faδ(x− xa)

+faδ(x+ x2a)
]
, (9)

where x1a = xa − `a/2, x2a = xa + `a/2, xa is the lo-
cation of the actuator center (expression in the bracket
is the sum of interacting actuators-beam forces), δ(·) is
Dirac delta distribution, qE is the amplitude of the ex-
ternal distributed force, and ωq is replaced by ωf . For
simplicity, all actuators are assumed to be identical from
the geometrical and technical point of view. In this case,
instead of Iν;E in Eq. (8), for f(x) one has

Iν = −
∫ `

0

f(x)Xν(x)dx = −qE
∫ `

0

Xν(x)dx

+
∑
a

fa [Xν(x1a)− 2Xν(xa) +Xν(x2a)] . (10)

The expression in square brackets constitutes, in an ap-
proximate manner, the second-order central �nite di�er-
ence. Since the distance between nodes `a is constant,
then the di�erence can be transformed approximately
into

1

`2a
[Xν(x1a)− 2Xν(xa) +Xν(x2a)] ≈ D2Xν(xa)

≈ κν(xa), (11)

where κν(xa) is the curvature of the mode Xν(x) at the
point x = xa [2�4].
An approximation carried out in (11) is a consequence

of replacement of the di�erential quotient by the deriva-
tive and moreover, the curvature is equal the second
derivative in approximately, for small vibrations.
Substituting Eq. (11) into Eq. (10), one obtains

Iν = −qE
∫ `

0

Xν(x)dx+
∑
a

fa`
2
aκν(xa) =

−Iq;ν +
∑
a

paκν(xa), pa = fa`
2
a. (12)

Substituting Eq. (8) into Eq. (5) via Eq. (12), one obtains

Xf (x) =
∑
ν

C∗νIνXν(x) =
∑
ν

C∗ν

×
(
− Iq;ν +

∑
a

paκν(xa)
)
Xν(x), (13)

and the reduction of vibrations is given by Eq. (4), where
X(x) ≡ Xf (x).

3. LQ problem formulation

To achieve the paper's aim, new variables are intro-
duced. Let assume, that total load can be written as
f(x, t) = fx(x)ft(t) = fxft. Let introduce new variables,
i.e.

z1 = u, z2 = Dtu, (14)

where z1 = z1(x, t), z2 = z2(x, t).
Substituting Eq. (14) into Eq. (1), one obtains equa-

tions in a matrix form (I is the identity operator):
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Dtz1
Dtz2

]
=

[
0 I

− 1
ρSEJD

4
x − 1

ρSEJµD
4
x

][
z1
z2

]

+

[
0

− 1
ρS fx(x)

]
ft(t). (15)

To formally formulate the LQ problem, the boundary
problem described in the above subsection should be
expressed in the form of an abstract model. For this
purpose, one introduces an abstract Hilbert state space
H := L2(0, `)⊕L2(0, `). In this space, the scalar product
is de�ned as 〈z, w〉H = 〈z1, w1〉L2(0,`)+〈z2, w2〉L2(0,`). For

�xed time t ≥ 0, the state vector z(t) = [z1(·, t), z2(·, t)]T
belongs to space H. So, the set Eq. (15) may be formu-
lated in abstract form as

Dtz(t) = Az(t) +Bw(t), y(t) = Cz(t). (16)

The state operator A : (D(A) ⊂ H)→ H is de�ned as

A

[
z1
z2

]
=

[
z2

− 1
ρSEJD

4
xz1 − 1

ρSEJµD
4
xz2

]
, (17)

where

D(A) =
{
z ∈ H : Dxz ∈ L2(0, `), D2

xz ∈ L2(0, `),

D3
xz ∈ L2(0, `), D4

xz ∈ L2(0, `), z(0) = 0,

Dxz(0) = 0, D2
xz(`) = 0, D3

xz(`) = 0

}
. (18)

The control vector B takes the form

B =

[
0

− 1
ρS fx(x)

]
/∈ H. (19)

The output operator is Cz = z1. One observes the �rst
state variable, i.e. the beam de�ection at the point x and
the �xed t. The LQ problem, with the �nite time horizon
T , lies in minimization of the (quadratic cost) functional

J(u0, w) = ‖w‖2L2(0,T ;C) + ‖y‖
2
L2(0,T ;C) (20)

over trajectories of Eq. (16).
This functional is not standard for LQ problem with

�nite time horizon; it is modi�ed a little. For the stan-
dard LQ problem, the theory of control gives an answer
how to construct an optimal regulator to ensure asymp-
totic stability closed loop system and the form of optimal
control is also known. It will be the subject of a future
research.
In the next sub-sections, the control is assumed in the

form ft = exp(iωf t) ∈ L2
loc(0,∞;C), where C is the

complex number set; note that ft is not optimal. For
such ft, the value of the functional is calculated. This
value depends, among other, on actuators distribution.
Looking for a minimum of this function one �nds the
optimal actuators distribution.

5. Optimal distribution of na actuators

It is further assumed that:

• there are na actuators with coordinates of their cen-
ters {xa}, Fig. 2 (a = 1, 2, . . . , na);

• ft = exp(iωkt), where ωk is the angular excited
frequency of excitation (ωf = ωk);

• qE(x) = q0Xk(x), where q0 is the excitation ampli-
tude and Xk(x) is the excitation form; as a result
of above assumptions, the beam vibrates only in k
mode.

Fig. 2. Distribution of actuators.

In this case, fx is given by Eq. (9), whereas the func-
tion representing the �rst coordinate in Eq. (14) takes
the form

z1(x, t) = CkXk(x) exp(iωkt) = C∗k

×
(
− Iq,k +

∑
a

paκk(xa)
)
Xk(x) exp(iωkt). (21)

The functional for the control ft depends on distribution
of actuators {xa} and has the form

J(x1, . . . , xna
) =

∫ T

0

∣∣ exp(iωkt)∣∣2dt+ ∫ T

0

∣∣∣C∗k
×
(
− Iq,k +

∑
a

paκk(xa)
)
Xk(x) exp(iωkt)

∣∣∣2dt =
T + (C∗k)

2
∣∣∣− Iq,k +∑

a

paκk(xa)
∣∣∣2X2

kT. (22)

Let us assume, that −Iq,k +
∑
a paκk(xa) < 0 [4]; other-

wise, i.e. −Iq,k +
∑
a paκk(xa) > 0, instead of reduction

of the vibrations, an increase would be obtained, so this
case is not considered.
A mathematical problem appears: to �nd such distri-

bution of actuators {xa} for which the value of functional
J takes a minimum. The su�cient condition for existence
of the extremum of the problem can be expressed in the
form

D1J(x1, x2, . . . , xna) = 2(C∗k)
2

×
(
− Iq,k +

∑
a

paκk(xa)
)
p1D1κk(x1)X

2
kT = 0,

D2J(x1, x2, . . . , xna
) = 2(C∗k)

2

×
(
− Iq,k +

∑
a

paκk(xa)
)
p2D2κk(x2)X

2
kT = 0,

...

Dna
J(x1, x2, . . . , xna

) = 2(C∗k)
2
(
− Iq,k

+
∑
a

paκk(xa)
)
pna

Dna
κk(xna

)X2
kT = 0, (23)

where Dx1(·) = D1(·), . . . , Da(·) = Dna(·) for simplicity.
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Assuming −Iq,k +
∑
a paκk(xa) < 0, the points in

which an extremum may occur must satisfy conditions

D1κk(x1) = 0, D2κk(x2) = 0, · · ·Dna
κk(xna

) = 0.(24)

To �nd the su�cient conditions of existence of an ex-
tremum, the matrix of second derivatives (Hessian H)
ought to be taken into account. Let the necessary con-
dition be satis�ed at the point P = (x1, x2, . . . , xna

).
Then the mixed derivatives at this point are equal to
zero, i.e. D2

abJ(x1, x2, . . . , xna
) = 0, a, b = 1, 2, . . . , na,

a 6= b. So the Hessian H at point P is a diagonal matrix
H = diag[D2

aaJ(P )]a, a = 1, 2, . . . , na.
Note that the second derivatives of the functional take

the following explicit form:

D2
aaJ(x1, x2, . . . xna

) = 2(C∗k)
2
[
p2a (Daκk(xa))

2

+
(
− Iq,k +

∑
a

paκk(xa)
)
paD

2
aaκk(xa)

]
X2
kT. (25)

The su�cient conditions for existing of a minimum of the
functional at point P are that the main minors are posi-
tive:

D2
11J > 0, det

[
D2

11J 0

0 D2
22J

]
> 0, · · ·

det


D2

11J 0 · · ·
0 D2

22J · · ·
...

... D2
nana

J

 > 0. (26)

Because of assumption made above in Eq. (24), from
the condition D2

11J > 0 it follows that D2
11κk(x1) < 0.

Therefore the su�cient conditions for existence of a min-
imum at point P take the form

D2
11κk(x1) < 0, D2

22κk(x2) < 0, · · ·

D2
nana

κk(xa) < 0. (27)

The results are identical to ones obtained in [2], so ob-
jective of the present paper is achieved.

6. Summary and conclusions

It should be emphasized that, in general, the solution
of eigenproblem in a Hilbert space is di�erent from the
solution given in subsection 2, but form of the �rst com-
ponent of the solution (eigenvector) is the same as in
Eq. (6). Eigenvalues are always di�erent but a connec-
tion can be found between new eigenvalues and these
introduce in section 2.
Furthermore, the point {xmax} at which the curvature

has the highest value should be found, but it is possi-
ble for the explicit form of the mode; for more details,
see [2, 4].
In the present paper, the quadratic cost functional is

a little modi�ed for LQ problem with a �nite time hori-

zon. For standard LQ problem, theory of control gives
an answer how to construct optimal regulator to ensure
asymptotic stability closed loop system and also the form
of optimal control is known. It will be the subject of a
future research. Furthermore, other cost functions will
be considered.
The conclusions enumerated below are derived assum-

ing that all actuators are the same and the beam vibrates
only in separate mode. Taking into account the theoret-
ical considerations on the grounds of the control theory
(strictly speaking, on the grounds of the LQ problem),
the following conclusions may be formulated:

• an optimal distribution of the actuators is in the
sub-domains of the separate beam mode with the
locally maximum curvatures;

• the above conclusion con�rms the results obtained
on pure mathematical way in the present author's
own papers.

The similar research for beam vibration (not for sep-
arate modes) and also for actuators di�erent with re-
gard to their geometrical and technical properties, may
be more useful. The studies on these problems are always
carried on.
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