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One of the most important tasks in outdoor acoustic monitoring stations is automatic extraction of the
measured signal parameters. In case of corona discharge noise from ultra-high voltage alternating current (UHV
AC) power lines it is necessary to select properly the corona audible noise (CAN) parameters to be monitored
for noise indicators calculation, as the monitored signal and the background noise strongly �uctuate. A combined
selection of distinctive features of CAN is necessary in order to distinguish the actual signal from the external
interference. The vast amount of recorded data is di�cult to store and process. Therefore, particular attention was
devoted to de�ne of the collected parameters used for automatic calculation of the CAN long-term noise indicators.
In addition, several new CAN parameters were introduced, including spectral moments, spectral coe�cients of tonal
components contribution, and power coe�cients in selected frequency bands; as it allowed more e�cient selection
of samples with non-zero contribution from CAN. The arti�cial neural network was applied for �nal classi�cation
of the measured samples. Selected and properly �ltered samples provided the basis for calculations of long-term
noise indicators. E�ciency of the said method was tested for the measurement sections with the recorded sound
signal and aural quali�cation of the CAN intensity.
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1. Introduction

The acoustic signal of corona discharge, as well as the
corona discharge process itself, is a random phenomenon
by its nature and it strongly depends on weather condi-
tions and the actual condition of the conductor's surface
which are also a�ected by many random factors [1]. It
leads to a number of problems regarding estimation of
basic noise indicators � LAeqT and Lden de�ned in ISO
1996-2:2007 � used in corona audible noise evaluation
[2�5] when they are based on short-term measurements
and one needs to expect the risk of time samples not
being representative enough, as well as the long-term
measurement (continuous monitoring) when the risk of
the indicators overestimation because of insu�cient �l-
tration of external interference occurs, especially in the
periods when the S/N ratio is not very high. For the
case of power transmission lines, such a situation is often
encountered in fair weather conditions, when the corona
audible noise (CAN) is rather weak, while the environ-
mental interference is above normal, e.g. due to intensive
agricultural activity. Extraction of CAN becomes partic-
ularly important for continuous monitoring systems when
the risk of the long-term indicator being biased due to en-
vironmental interference occurs, such risk being di�cult
to eliminate. In order to optimize interference �ltration,
it is necessary to register the noise spectra in the acous-
tic frequency band with such registration step adequate
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for local prevailing at the monitoring site, so that on one
hand the information is not lost (if the registration step is
too long) and on the other, the problems with processing
of excessive data �les for too short registration step can
be avoided. However, it is always recommended to adopt
a system able to automatically determine some noise pa-
rameters in real time and classify the registered data with
an extra possibility to record time-marks (time-stamps)
when essential disturbances occur. It is necessary not
only for determination of the long-term indicators but
also for the estimation of partial uncertainties of the in-
dicators extraction at various levels of external interfer-
ence.
In authors' research focused on CAN detection, the

statistical levels measurements in 1/3 octave bands [6]
have been used as a preliminary method for external in-
terference �ltering, as said method was extensively tested
in continuous monitoring systems. In the course of fur-
ther processing, the distinctive features of CAN are de-
termined which are useful in automatic detection of such
a signal. In order to increase the e�ciency of such an ap-
proach, in addition to the spectral moments implemented
in the previous papers [3, 6, 7], some new parameters of
the acoustic signal have been introduced [4], namely the
coe�cients of tonal component contributions and the co-
e�cients of signal power registered in the tonal and noise
bands. Veri�cation of usability of individual parameters
in the feature vector and the degrees of their correlation
were carried out using the cluster analysis.
In the paper [4], categorization of registered samples

into one of two classes related to �1� (corona e�ect) and
�0� (no corona e�ect) was carried out using the Support
Vector Machines technique. In this study, an arti�cial
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neural network (Multi-Layer Perceptron) has been used
for automated classi�cation of CAN. Selection of the net-
work architecture, as well as the neuron activation func-
tion and the network training method, were carried out
experimentally. Two variants of the training vector were
used, composed of either four or two CAN categories.
Depending on environmental conditions (occurring dis-
turbances), di�erent number of categories of CAN may
prove more useful. Also two feature vectors consisting of
19 or 10 acoustic and non-acoustic parameters were used,
representing distinctive CAN features.

2. Research methodology

In this paper and in the present authors' previous pa-
pers [3, 4, 11], recordings from a mobile continuous acous-
tic monitoring station were used for detection and iden-
ti�cation of CAN. The monitoring measurements were
carried out in several locations near UHV AC transmis-
sion lines, e.g. near a 400 kV double circuit line with
double (2 × 525 mm2) and a triple (3 × 350 mm2) bun-
dle of subconductors. The monitoring station registered
noise parameters in the mode of sound level continuous
spectrum measurement in 1/3 octave bands in the fre-
quency range between 20 Hz and 20 kHz. Additionally,
A-, C-, and Z-weighted sound levels were registered. The
averaged spectrum data was recorded to a bu�er-type
�le every 10 s, while the other data including LAeq val-
ues and statistical levels (LA50, LA90) of the 1/3 octave
spectrum and the A-, C-, and Z-weighted sound levels
have been recorded every 15 minutes. The registered data
were used for extraction of distinctive features of CAN,
and further for determination of the short- (LAeqT ) and
long-term (Lden) noise indicators used for assessment of
the corona noise nuisance. Large number of details, as
carried by results in spectral analysis, complicates in-
terpretation and recognition of the essential information
contained in the registered signal. Therefore, from the
spectrum (frequency domain) or multi-spectrum (time
and frequency domain), speci�c (distinctive) features are
determined that are useful for a speci�c problem of inter-
est. In the case of CAN spectrum, the following param-
eters related to its density distribution are determined
which can be considered distinctive features:

• normalized (to M0) spectral moments of the 1st
and 2nd order (M1, M2) for the whole frequency
band (20 Hz to 20 kHz),

• normalized (to Mw0) spectral moments of the 1st
and 2nd order (Mw1, Mw2) for the frequency
band characteristics for the wind e�ects (20 Hz to
400 Hz),

• normalized (to Mc0) spectral moments of the 1st

and 2nd order (Mc1, Mc2) for the frequency band
characteristic to the broadband part of CAN (1 kHz
to 10 kHz).

Normalized spectral moment of the m-th order is de-
scribed by a general relation is de�ned as:

M∗
m(t) =

∑N
i=0 |Gn(fi)| [fi]m∑N

i=0 |Gn(fi)|
, (1)

where Gn(f) is the frequency spectrum of the n-th data
record, fi is the central frequency for the i-th frequency
band de�ned for the spectral analysis, f0 is the lower
band frequency, fN is the upper band frequency (N de-
pends on the bandwidth), and m is the order number.
The e�ectiveness of such an approach may be increased

by narrowing the analyzed frequency bands separately to
the �noisy� spectrum part and the tonal spectrum part.
Therefore the following parameters have been used:

• PC1 coe�cient of the signal power calculated for
the 20 Hz to 400 Hz frequency band where rainfall
noise e�ects and the tonal components of corona
noise are encountered;

• PC2 coe�cient of the signal power calculated for
the 1 kHz to 10 kHz frequency band where the noise
components of corona process signal are located;

• TC100 and TC200coe�cients useful in detection of
100 Hz and 200 Hz tonal components in the spectra
of registered samples [9].

The signal power coe�cients of the m-th order (also
called the `relative power coe�cients') are determined by
means of the formula

PCm =

∑fupper

f=flower
Gn(f)∑20000

f=20 Gn(f)
, (2)

where flower and fupper are the limits of the selected fre-
quency band, and tonal coe�cients are calculated accord-
ing to

TCx =
∂Gn(f)

∂x

∣∣∣∣
x=100,200

, (3)

where x is the frequency of a given tonal component at
100 Hz and 200 Hz.
In the authors' previous papers [3, 6�8, 10] several ver-

sions of the feature vector were presented and proper
selection of the feature space was extensively discussed.
The space of the feature vector present at the origin of
the considerations on its �nal dimension (19 parameters)
is based on the spectral coe�cients statistical data of the
A-weighted sound level and the meteorological data de-
scribed as

Xn = 〈M0,Mc0,Mw0,M1,Mc1,Mw1,M2,Mc2,

Mw2, PC1, PC2, TC100, TC200, RH,RF,WS,

LA90, LA50, LA50(1−10) kHz〉, (4)

where the parameters not listed earlier are as follows:
LA90 is the L90 statistical level for A-weighted sound
level (carrying the information concerning the interfer-
ence level), LA50 is the L50 is statistical level for A-
weighted sound level, LA50(1−10) kHz is the L50 statistical
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level of A-weighted sound level determined for the 1 kHz
to 10 kHz frequency band, RF is the rain fall level (in
[mm/h]), WS is the wind speed (in [m/s]), RH is the
relative humidity (in [%]).

3. Research material

The database used in the present study contained
17151 records sampled every 15 minutes, with the im-
posed recognition quali�cation thresholds �0� � no
corona e�ect; �0.25� � low corona e�ect; �0.5� � av-
erage corona e�ect; �1� � high corona e�ect. The cat-
egories of �0.25� and �0.5� can also mean di�erent in-
terference masking distinctive features of CAN, whereas
category �1� means intensive and not interfered CAN.
This classi�cation was proposed by a subjective deci-
sion based on listening to sample audio recordings of
the data and was necessary to use arti�cial intelligence
methods (Multi-Layer Perceptron training process). The
database included 417 records registered during low rain-
fall (0�0.5 mm/h) average rainfall (0.5-2 mm/h) and in-
tense rainfall (> 2 mm/h) conditions among which 361
records were marked with wind speed value 0�1.1 m/s.
The records with the rainfall accompanied by a low value
of wind speed are particularly useful, because of the high
intensity of corona e�ect and low level of external inter-
ference (caused by wind).

Fig. 1. Spectrum of the high corona e�ect.

Fig. 2. Spectrum of the average corona e�ect.

Fig. 3. Spectrum of the low corona e�ect.

Fig. 4. Spectrum of no corona e�ect.

Example spectra registered by acoustic monitoring sta-
tions are shown in Figs 1�4. Respective values of the
feature vector and the CAN classi�cation into four cat-
egories: high corona e�ect, average corona e�ect, low
corona e�ect, and no corona e�ect are shown in Table I.

Veri�cation of the selected feature vector's quality (4)
was carried out using the cluster analysis [10]. In the clas-
sical cluster analysis, matrix of distances between objects
is calculated in order to determine the similarity of these
objects. Reversing the assumption, in order to estimate
the correctness of feature space choice (the measure of
features dissimilarity), the objects were created from the
individual elements of the feature vector (Eq. (4)) tak-
ing into account the entire database (17151 records). To
calculate distance between parameters of the presented
feature vector was used the Euclidean metric and for
group of the objects - average method. The results of
this veri�cation are shown in two �gures: dendrogram of
the features for intense corona e�ect situation (Fig. 5)
and the remaining situations, including no corona e�ect
conditions (Fig. 6).

Fig. 5. The results of cluster analysis (dendrogram) for
the feature vector selected for an intensive corona pro-
cess.

As it can be noticed for the case presented in Figure 5,
the features which correlate are the following: LA90, LA50

and LA50(1−10) kHz, then the group of spectral moments
of 0-th order (M0, Mc0, Mw0). Also in the case shown
in Fig. 6, high correlation can be noticed for moments
LA90, LA50 and LA50(1÷10) kHz together with M0, Mc0
and RH and then Mc1, Mc2 and M2.
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TABLE IExample values of the corona e�ect feature vector (shown in Figs. 1�4).

Corona e�ect M0 Mc0 Mw0 M1 Mc1 Mw1 M2 Mc2 Mw2 PC1 PC2 TC100 TC200 RH RF WS LA90 LA50 LA50(1−10) kHz

�1� � high 1045 410 321 630 3150 125 5642 3893 160 0.4 0.4 40 9 93.8 0.3 0 48.3 48.5 48

�0.5� � aver. 896 264 331 400 3150 125 4869 3515 150 0.6 0.2 �2 0 30 0 0.3 35.4 37.9 35.6

�0.25� � low 790 268 270 500 3150 125 5166 3658 144 0.57 0.32 0 0 79.9 0.3 0 35.4 37.9 36.1

�0� � no 896 264 331 400 3150 125 4869 3515 150 0.6 0.2 �2 0 30 0 0.3 35.4 37.9 35.6

Fig. 6. As Fig. 5 for remaining cases including the
acoustic background.

This indicates that features in the above-listed groups
duplicate to a high degree the contributed information;
therefore it seems justi�ed to leave only one of the fea-
tures in each group. Ultimately the authors abandoned
determination of spectral moments of the same order for
various frequency bands, the LA50 and LA50(1−10) Hz lev-
els, as well as the M0 moment, leaving only the LA90

level. Thus the 19 dimension space of the feature vector
(4) has been reduced to 10 elements and can be �nally
represented symbolically by

Xn = 〈M1,M2, PC1, PC2, TC100, TC200,

RH,RF,WS,LA90〉. (5)

4. Arti�cial neural network classi�cation

An arti�cial neural network has been used for auto-
mated signal classi�cation. Selection of the network ar-
chitecture (the number of layers and number of neurons
in each layer), as well as the activation function and
the network training method was made experimentally,
in two independent calculation environments, MATLAB
and STATISTICA. In the experiment, 4460 records of
the collected material were used, of which 70% for the
network training and about 30% for veri�cation of the
method (of which 15% for validation and 15% for test-
ing).
Two variants of the training vector were used � vector

of four classes related to �0� (no corona e�ect), �0.25�
(low corona e�ect), �0.5� (average corona e�ect) and �1�
(high corona e�ect) and a vector of two classes related to
�1� (high corona e�ect) and �0� (no corona e�ect). Two
feature vectors composed of 19 or 10 parameters of the
feature space were used.
Tables II�V present the top 5 results of the arti�cial

neural network architecture selection for the considered
problem in di�erent variants of the feature vector and
CAN classes.

TABLE II

Summary of the neural network selection process (19-parameter feature space, 4 classes of CAN).

ID Network Quality Training Error Activation

training testing validation algorithm function (hidden) (output)

1 MLP 19-13-4 92.4 95.3 91.1 BFGS 95 SOS Exponential Tanh

2 MLP 19-16-4 90.0 93.5 91.1 BFGS 49 SOS Exponential Logistic

3 MLP 19-11-4 93.3 87.6 87.8 BFGS 55 SOS Exponential Tanh

4 MLP 19-15-4 93.3 86.2 86.7 BFGS 70 Entropy Linear Softmax

5 MLP 19-5-4 91.1 86.4 84.4 BFGS 41 SOS Linear Tanh

TABLE III

Summary of the neural network selection process (19-parameter feature space, 2 classes of CAN).

ID Network Quality Training Error Activation

training testing validation algorithm function (hidden) (output)

1 MLP 19-14-2 97.6 97.1 98.9 BFGS 69 SOS Tanh Logistic

2 MLP 19-13-2 96.2 96.4 97.8 BFGS 46 SOS Linear Linear

3 MLP 19-11-2 93.1 94.4 94.4 BFGS 71 Entropy Logistic Softmax

4 MLP 19-5-2 92.4 92.3 92.2 BFGS 47 Entropy Tanh Softmax

5 MLP 19-9-2 90.2 91.1 91.1 BFGS 52 Entropy Tanh Softmax
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TABLE IV

Summary of the neural network selection process (10-parameter feature space, 4 classes of CAN).

ID Network Quality Training Error Activation

training testing validation algorithm function (hidden) (output)

1 MLP 10-10-4 96.1 95.5 94.4 BFGS 89 Entropy Tanh Softmax

2 MLP 10-7-4 95.0 95.0 96.6 BFGS 50 Entropy Tanh Softmax

3 MLP 10-9-4 94.0 93.9 92.2 BFGS 56 Entropy Logistic Softmax

4 MLP 10-4-4 93.1 93.7 93.3 BFGS 48 Entropy Logistic Softmax

5 MLP 10-4-4 92.9 93.5 94.2 BFGS 59 SOS Tanh Tanh

TABLE V

Summary of the neural network selection process (10-parameter feature space, 2 classes of CAN).

ID Network Quality Training Error Activation

training testing validation algorithm function (hidden) (output)

1 MLP 10-8-2 99.1 98.8 98.5 BFGS 105 Entropy Logistic Softmax

2 MLP 10-19-2 98.7 98.5 98.6 BFGS 61 Entropy Tanh Softmax

3 MLP 10-10-2 98.7 98.6 98.7 BFGS 62 Entropy Logistic Softmax

4 MLP 10-20-2 98.5 98.3 98.6 BFGS 54 Entropy Exponential Softmax

5 MLP 10-6-2 98.4 98.1 98.7 BFGS 65 Entropy Logistic Softmax

Symbols used in the tables denote: MLP � Multi-
Layer Perceptron with the number of layers and the num-
ber of neurons in each layer; BFGS � Broyden-Fletcher-
Goldfarb-Shanno training algorithm with the number of
epocs; Logistic � logistic sigmoid activation function;
Tanh � hyperbolic tangent activation function; Expo-
nential � exponential activation function; Softmax �
softmax activation function; SOS � sum of squares error
function; and Entropy � cross entropy error function.
The results of CAN classi�cation by using Multi-Layer

Perceptron are very good. The highest quality testing
value of neural network is 98.8% (MPL 10-8-2) for the
10-parameter vector and two classes of CAN. However, in
the case of classi�cation into 4 classes of CAN the quality
testing value of neural network is 95.5% (MLP 10-10-4).
For the 19-parameter feature vector classi�cation quality
testing values are smaller and equal to 95.3% (MLP 19-
13-4) and 97.1% (MLP 19-14-2).
Better recognition of only the two classes does not

mean more accurate �nal result, i.e. the estimation of
long-term noise indicators. The quality of this result can
be assessed by determining the measurement uncertainty
for each of the classes.

5. Conclusions

The present paper presents a usefulness of arti�cial
neural networks (Multi-Layer Perceptron) for automatic
classi�cation of measured data, collected in continuous
acoustic monitoring stations designed for the corona au-
dible noise generated by ultra-high voltage power lines.
The dedicated feature vector consists of 10 features rep-
resenting distinctive features of the CAN spectral den-
sity distribution, such as � spectral moments, spectral
power coe�cients, tonal components contribution coe�-
cients and meteorological data (humidity, rainfall, wind

speed). It has been shown that it is possible to achieve
more than 98% of correct quali�cations (recognitions) for
the registered samples. Better recognition (classi�cation)
level achieved for the samples registered in high corona
intensity conditions (more distinct characteristic features
of CAN) ensures higher accuracy of determination for the
long-term indices of corona noise. A prerequisite (and
also a disadvantage) for using these solutions is the ne-
cessity to collect a representative sample group of learners
and successful validation of the method. The presented
methodology of automated classi�cation of the measured
data can be also applied for monitoring measurements of
other objects (noise sources).
The �nal choice of the method to the classi�cation of

the monitored data and the number of classes results
should be preceded by an analysis of the uncertainty of
determining the sought target parameters.
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