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The paper concerns the eigenanalysis of acoustic cavities with the use of radial basis functions (RBF). The
Kansa collocation method was used for determination of the natural frequencies and eigenvectors of 1D, 2D and 3D
acoustic �elds. Due to validation analysis of the proposed method, in simple examples like 1D, 2D rectangle and 3D
rectangular parallelepiped all calculated eigenferquency and eigenvectors were compared with exact (analytical)
results. All results indicate that using of multiquadric radial basis functions provide a results with very high
accuracy in comparison to analytical results. In the paper a new method for determining the shape parameter of
the multiquadric radial basis functions is described.
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1. Introduction

A acoustic characterization of complex cavities is of
primary importance in many engineering applications.
For example, in room acoustics a prediction of sound level
can help in optimization of the acoustic adaptation pro-
cess, while in the automotive industry, there is a strong
demand for methods which can predict the noise level in-
side a vehicle. In fact, the acoustic eigenvalues analysis
is now considered as a necessary step in the early stage
of design work on concert halls, class rooms and even
vehicles.

Mathematical modeling of acoustic �elds in the inte-
rior problem results in set of partial di�erential equations
(PDEs) along with a set of boundary (and initial) condi-
tions. In order to deal with complex geometry of acoustic
cavities involved in these problems, numerical methods
were developed over the last three decades, since exact
solutions are usually not available. Traditional numer-
ical approaches for approximate solution of these prob-
lems require the use of a mesh: a domain mesh in case
of domain methods such as the �nite di�erence method
(FDM), the �nite element method (FEM), or �nite vol-
ume method (FVM), or a boundary mesh for boundary
methods such as the boundary element method (BEM).

The extraordinary amount of work, which has been
put into FEM research since its early days made FEM
the dominant approach for most problems in computa-
tional mechanics including acoustics. The main di�cul-
ties associated with the use of a mesh consist in de�ning
the mesh itself. The generation of a �nite element grid
with several thousand nodes and element of various sizes,
shape and orientation in not a trivial task. Usually the
researcher spends the majority of his or her time in cre-
ating the mesh, and it becomes a major component of
the cost of a simulation process because the cost of CPU
time is drastically decreasing.
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Meshless methods, i.e. the methods without employing
the concept of element, have been suggested for problems
in computational mechanics, as they do not require a
mesh to discretize the domain of interest and the approxi-
mate solution is constructed entirely in terms of scattered
nodes.

Meshless methods may be categorized into two groups:
domain type methods such as element-free Galerkin
method [1], reproducing Kernel particle [2], the point in-
terpolation method [3�5]; and boundary type methods
such as the boundary node method [6], and the bound-
ary point interpolation method [7, 8]. In these two types
of meshless methods the problem domain or only bound-
ary of the domain is discretized by scattered points. In
particular, the above-mentioned methods are �meshless�
only in terms of interpolation of the domain or boundary
variables, as compared to the usual FEM or BEM. Most
of the meshless methods have to use the background cells
to integrate a weak form over the problem domain. The
requirement of the background cells makes a method not
�truly� meshless.

Recently, the development in applying the radial basis
functions (RBFs) as a truly meshless method of �nding
approximate solutions of di�erential equations has drawn
the attention of many researchers in science and engineer-
ing. What is more, their implementations is more simpler
compared to the mainstream numerical techniques such
as FDE, FEM, FVM and BEM.

In 1990 Kansa [9] introduced the RBFs collocation
method for solving elliptical, hyperbolic and parabolic
PDEs. Over the years, this method was extended to
solve various ordinary and PDEs including the biphasic
and triphasic mixture models for tissue engineering prob-
lems [10, 11], 1D nonlinear Burgers' equation [12], shal-
low water equation for tide and current simulation [13],
heat transfer problems [14], free boundary problems [15],
Navier-Stokes equations [16], di�erent kinds of Dirich-
let [17] and Poisson [18] problems, electromagnetic prob-
lems [19], PDE-constrained optimization problems [20]
and many others. RBF method succeed in very general
settings by composing a univariate function with the Eu-
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clidean norm which turns a multidimensional problem
into one-dimensional one.
This paper concerns application of the multiquadric

(MQ) RBS to eigenanalysis of 1D, 2D and 3D acous-
tic �elds. For the purpose of validation of the proposed
method, all eigenferquency and eigenvectors calculated
for simple examples like 1D, 2D rectangle and 3D rect-
angular parallelepiped are compared with exact (analyti-
cal) results. In the paper a new methods for determining
the shape parameter is described.
The paper is organized as follows: in Secs. 2 and 3, a

brief introduction to RBF itself and their use in Kansa
method is given. For sake of simplicity, the authors begin
with describing a 1D case in Sec. 4. In Sec. 5 application
of the proposed method to a 2D problem is presented.
In Sec. 6, a 3D steady-state acoustic �eld is considered.
Finally, in Sec. 7 of the paper summary and conclusions
are given.

2. RBF

The Radial Function is a continuous univariate func-
tion that has been realized by composition with the Eu-
clidean norm on Rd and can be written as

φj(r) = φ(||x− xj ||), (1)

where r = ||x − xj || is the Euclidean distance between
points x and xj . This radial function can be translated
(shifted) and placed on a set of distinct and scattered
points xj as its centers to form a family of independent
functions.
In this way one single basic RBF, Eq. (1), generates

the basis of any function approximation.
Di�erent types of RBFs functions φ(r) may be catego-

rized into three main groups: compactly supported and
�nitely smooth; global and �nitely smooth; global, in-
�nitely di�erentiable, containing a free parameter called
the shape parameter (denoted by c).

TABLE I
De�nition and class of smoothness of compactly sup-
ported Wenland's RBFs.

Dim. De�nition Class

d=1 φ(r) = (1− r)+ C0

φ(r) = (1− r)3+(3r + 1) C2

φ(r) = (1− r)5+(8r2 + 5r + 1) C4

d=2,3 φ(r) = (1− r)2+ C0

φ(r) = (1− r)4+(4r + 1) C2

φ(r) = (1− r)6+(35r2 + 18r + 3) C4

φ(r) = (1− r)8+(32r3 + 25r2 + 8r + 1) C6

Table I list some of compactly supported CS-RBFs
constructed by Wendland [21]. It contains the low-
est possible degree among all piecewise polynomial CS-
RBFs which are positive de�ned on Rd for given order of
smoothness, where

(1− r)n+ =

{
(1− r)n, if r ∈ 〈0, 1〉
0 if r > 1

TABLE IIGlobally supported RBFs.

De�nition Name of RBF

φ(r) = r linear

φ(r) = r3 cubic

φ(r) =
√
r2 + c2 MQ

φ(r) = r2n log r thin plate spline (TSP)

φ(r) = 1√
r2+c2

inverse MQ

φ(r) = exp−cr2 Gaussian (GA)

Other compactly supported RBF have been proposed by
Wu [22] and Gneiting [23].
Table II lists some commonly used, globally supported

RBFs.
In this paper we focus on the MQ RBF due its popular-

ity in applications and its good approximation properties.
The MQ function with center at xj may be written in the
form:

φj(r) =
√

(x− xj)2 + c2j

in 1D problems

φj(r) =
√

(x− xj)2 + (y − yj)2 + c2j

in 2D problems

φj(r) =
√

(x− xj)2 + (y − yj)2 + (z − zj)2 + c2j

in 3D problems.

(2)

The MQ (2) is a representative of the group of RBFs
that are global, in�nitely di�erentiable and contain the
shape parameter c.
In MQ RBF meshless method, the shape of the basis

function (2) is controlled by a free parameter c. As c gets
larger, the shape becomes �at and is insensitive to the
di�erence in Euclidean (radial) distance. The choice of
the shape parameter c is a di�cult and so far unresolved
problem.

3. Kansa's method for solving di�erential

equations

The Kansa's collocation method is one of the meshless
(meshfree) methods, which are based on approximation
and collocation of global functions. Unlike the FEM,
which is based on patching together elements with lo-
cal, low-degree polynomial interpolants, the global shape
function extend their in�uence to the entire domain of
interest, without division into elements.
Consider the following governing equation:

Lu = f(x) x ∈ Ω, (3)

subject to the boundary condition

Bu = g(x) x ∈ Γ, (4)

where L is a linear di�erential operator, B is a boundary
operator of order lower than L, Ω is the analyzed domain
and Γ is the boundary of the domain.
The general idea of Kansa's method is to approximate

the solution of the problem (3) and (4) in such a way
that it can be represented as a sum of a series of globally
supported RBFs:
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û =

N∑
j=1

αjφj(r), (5)

where φj(r) are globally supported RBFs (in this paper
only MQ RBFs (2) are used) and αj are constant coe�-
cients to be determined by collocation procedure.
The approximate solution (5) must satisfy the govern-

ing equation (3) and boundary condition (4). Lets us
assume that on a set of NI distinct (collocation) points
{x1, x2, . . . , xNI

} ∈ Ω, the approximate solution is re-
quired to satisfy the the governing equation (3):

û = f(x)⇔
N∑
j=1

αjLφj(ri) = f(xi)

i = 1, 2, . . . , NI . (6)

By the same token, for a set of NB points on the bound-
ary {xNI+1, xNI+2, . . . xNI+NB

∈ Γ it is required that
N∑
j=1

αjBφj(ri) = g(xi)

i = NI + 1, NI + 2, . . . , NI +NB . (7)

Eqs. (6) and (7) constitute linear systems, which can
be written in matrix form

Aα = f . (8)

The system (8) can be solved for coe�cients αj , j =
1, 2, . . . , N . In case when NI + NB = N , the Gaus-
sian elimination or inverse matrix procedure can be used,
when NI + NB > N , the overdetermined linear system
can be solved in the last square sense.
The choice of the shape parameter c is the source of

con�ict between theoretically achievable accuracy and
numerical stability. The error in interpolation decrease
when the shape parameter increase but then the condi-
tion number of matrix A increase, i.e. the collocation
matrix becomes ill-conditioned. In literature this phe-
nomenon has been referred to as the trade-o� or uncer-
tainty principle [24].
The extend review of choosing of the �optimal� shape

parameter in given in [25]. In this paper a new method
of determining of the shape parameter is proposed.
Once the coe�cients αj are determined the approx-

imate solution is given by (5), which is de�ned for all
x ∈ Ω. So reconstructed solution in with MQ RBFs, at
evaluation point xe can be written as

û(xe) =
N∑
j=1

αj

√
(xe − xj)2 + c2

in 1D problems

û(xe) =
N∑
j=1

αj

√
(xe − xj)2 + (ye − yj)2 + c2

in 2D problems

û(xe) =
N∑
j=1

αj

×
√

(xe − xj)2 + (ye − yj)2 + (ze − zj)2 + c2

in 3D problems.

(9)

In all cases analyzed here, constant shape parameter

will be assumed i.e. cj = c - one value for all basis
functions.

3.1. MQ RBF solution of the acoustic �eld

Considering an acoustic cavity (domain Ω) �led with
a perfect �uid and implicit eiωt time dependance, the
harmonic wave propagation problem in terms of acoustic
pressure amplitude in governed by the Helmholtz equa-
tion in form:

∇2p(r) + k2p(r) = 0 r ∈ Ω ⊂ Rd, (10)

where ∇ is the Nabla operator, p is the amplitude of the
acoustic pressure, k is the wave number (ω/s), ω is the
circular frequency, s is the sound velocity in �uid medium
and d = 1, 2or3 is domain dimension. The acoustic prob-
lem consist in computing eigenvalues (wave number k) in
the �uid within the enclosure with prescribed boundary
conditions.
According to Kansa'a method, Eq. (10) can be written

as
N∑
j=1

αj∇2
√
r2
j + c2

∣∣∣∣∣
r=ri

+ k2
N∑
j=1

αj

√
r2
j + c2 = 0, (11)

where ri are coordinates of collocation points i =
1, 2, . . . , NI , and rj are coordinates of RBF centers j =
1, 2, . . . , N

r2
j = (xi − xj)2,

in 1D problems

r2
j = (xi − xj)2 + (yi − yj)2,

in 2D problems

r2
j = (xi − xj)2 + (yi − yj)2 + (zi − zj)2,

in 3D problems.

(12)

For each i Eq. (11) gives i − th row of collocation
matrix A (8) (now the vector f ≡ 0). The last NB rows
of this matrix depends on boundary conditions (set of
NB points on the boundary).
To obtain the nontrivial solution (α 6= 0), the determi-

nant of the matrix A must be zero, i.e. detA = 0. From
this equation, the natural frequencies of the beam can be
calculated.

3.2. Choice of the shape parameter

The simplest strategy is perform a series of approxima-
tion experiments with varying shape parameter and then
pick the �best� one. It is possible only in case when the
solution of the di�erential equation in question is known.
Other popular strategies are based on the power func-
tion, cross validation, or Contour-Pade algorithm. All of
them are described in [24].
Herein, the authors propose to introduce another strat-

egy, which is based on following algorithm:

1. Establishing a range of shape parameter c with step
∆c,

2. Finding k values for which detA = 0,

3. If there is no indication of stable value of k for
various c, then going to 1 (and changing the range
of c);
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4. If there is a stable (the same) value of k for various
c, choosing any value of c from this stable range,

In Fig. 1a, the variable k as a function of shape pa-
rameter c is shown, whereas the rage of shape parameter
was chosen as c ∈ 〈0.01 − 1.2〉 with step ∆c = 0.01. It
is clearly visible from this �gure that, for wide range of
c from about 0.2 to about 0.9, there is only one (stable)
value of k obtained from calculation.
Any value from this rage can be chosen as �optimal�

in RBF analysis. There is no problem with condition
number of collocation matrix, because there is clearly
visible in Fig. 1 when (for which value of c) the solution
breaks down.
In Fig. 1b solution of equation detA = 0 for a wider

rage of k is shown. Six successive wave numbers are vis-
ible In this �gure.

Fig. 1. An example of using the proposed algorithm of
choosing the �optimal� shape parameter: (a) only one
(�rst) eigenvalue. (b) six successive eigenvalues.

4. One-dimensional acoustical �eld

Using the collocation method for solving the Helmholtz
equation (10) leads to system of equation in the form:

Aα = 0. (13)

Here the elements of matrix A are given by

Ai,j =
d2

dx2

∣∣∣∣∣
x=xi

√
(x− xj)2 + c2

+k2
√

(xi − xj)2 + c2. (14)

The last two rows of matrix A depend on boundary con-
ditions

Ai,j =
d

dx

∣∣∣∣∣
x=0,l

√
(x− xj)2 + c2. (15)

Components of the vector α = [α1, α2, . . . , αN ]T repre-
sent the �magnitudes� of the j-th RBF function.
To obtain a nontrivial solution (α 6= 0), the determi-

nant of the matrix A must be zero, i.e. detA = 0. From
this equation, the eigenvalues k can be calculated.

4.1. Comparison of results

For the purpose of validation of the proposed method,
in a simple 1D example all calculated eigenfrequency and
eigenvectors are compared with exact (analytical) results.
The following relative errors were used to measure the
quality of the numerical solution (superscript 'exact' de-
notes analytical results, superscript 'RBF' - approxima-
tion with RBF).

Eωi =

√
(ωexact

i − ωRBF
i )2

(ωexact
i )2

· 100%, (16)

where ωi is the i-th natural frequency of the 1D acoustic
�eld, and

Emode
i =

√√√√√√√√
l∫

0

(Xexact
i −XRBF

i )2 dx

l∫
0

(Xexact
i )2 dx

· 100%, (17)

where the Xi is the normalized i-th mode shape of
the cavity. In all calculations presented in this section
N = 200 (the number of evaluation points along the an-
alyzed cavity) is used.
The values of errors Eωi

and Emode
i computed for the

�rst 25 eigenvalues (i = 1, 2, . . . 25) are shown in Fig. 2a
and Fig. 2b respectively.

Fig. 2. Errors in MQ RBF eigenanalysis of 1D acoustic
�eld: (a) errors in eigenfrequencies calculation (b) errors
in eigenvectors determination.
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The values of errors shown in Fig. 2 suggest that the
results of the 1D acoustic �eld with MQ RBF are more
than very similar to analytical results.

5. Two-dimensional acoustic �eld

In case of 2D acoustic �eld, the �rst NI ×N elements
(NI is a number of collocation points, N is a number
of MQ RBF functions used in approximation) of the ap-
proximation matrix A (see Eq. (8)) are given by:

Ai,j =
∂2

∂x2

∣∣∣∣∣
(x,y)=(xi,yi)

√
(x− xj)2 + (y − yj)2 + c2

+
∂2

∂y2

∣∣∣∣∣
(x,y)=(xi,yi)

√
(x− xj)2 + (y − yj)2 + c2

+k2
√

(xi − xj)2 + (yi − yj)2 + c2. (18)

The last NB (number of boundary points) rows of ma-
trix A depend on boundary conditions.

Ai,j =
∂

∂n

∣∣∣∣∣
x,y∈Γ

√
(x− xj)2 + (y − yj)2 + c2. (19)

In the above equation ∂
∂n is the directional derivative

of RBF in the direction of the outward pointing normal
n to the boundary line Γ:

∂φ(r)

∂n
= ∇ϕ(r) · n. (20)

To obtain a nontrivial solution (α= 0), the determinant
of the matrix A must be zero i.e. detA = 0. From this
equation the natural frequencies are calculated.

5.1. Simple 2D rectangular domain

For the purpose of validation of the proposed method,
�rstly a simple 2D example of acoustic �eld in a rectangu-
lar domain was analyzed. All calculated eigenfrequency
and eigenvectors are compared with exact (analytical) re-
sults. The following relative errors were used to measure
the quality of the numerical solution (superscript 'exact'
denotes analytical results and subscript 'RBF' - approx-
imation with RBF.

Eωi
=

√
(ωexact

i − ωRBF
i )2

(ωexact
i )2

· 100%, (21)

where ωi is the i-th natural frequency,

Emode
i =

1

Ne

√√√√√√√√
Ne∑
i=1

(Xexact
i −XRBF

i )2

Ne∑
i=1

(Xexact
i )2

· 100%, (22)

where Xi is the normalized i− th mode shape. In all cal-
culations presented in this section Ne = 165 (the number
of evaluation points in the analyzed domain) is used.
The values of errors Eωi

and Emode
i computed for the

�rst 25 eigenvalues (i = 1, 2, . . . 25) are shown in Fig. 3a
and Fig. 3b respectively.
The values of errors shown in Fig. 3 suggest that the

results of the acoustic eigenanalysis in 2D domain are
very similar to analytical ones.

Fig. 3. Errors in MQ RBF eigenanalysis of 2D simple
rectangular acoustic �eld: (a) errors in eigenfrequencies
calculation (b) errors in eigenvectors determination.

5.2. Arbitrary 2D domain

As an another example, the shape shown in Fig. 4 was
adopted as an arbitrary domain.

Fig. 4. The analyzed 2D acoustic domain.

The geometrical model was prepared in CAE open-
source software SALOME v.5.1.4 [26]. This software was
used for geometrical modeling and boundary discretiza-
tion. The boundary nodes were used by the authors' own
software to de�ne coordinates of the MQ RBF centers
and collocation points. In Fig. 5 the domain with RBF
centers (denoted by �x�) and collocation points (denoted
by �o�) is shown.

All calculated eigenfrequency were compared with �-
nite element analysis results (obtained with the use of
SALOME [26] software). The following relative error was
used in comparison of results (superscript 'FEM' denotes
�nite element analysis results and superscript 'RBF' - ap-
proximation with RBF):
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Fig. 5. The analyzed 2D acoustic domain with RBF
centers (denoted by x) and collocation points (denoted
by o).

Eωi
=

√
(ωFEM

i − ωRBF
i )2

(ωFEM
i )2

· 100%, (23)

where the ωi is the i-th natural frequency.
The values of error Eωi

computed for the �rst 25 eigen-
values (i = 1, 2, . . . 25) are shown in Fig. 6.

Fig. 6. Errors in MQ RBF eigenfrequencies calculation
of 2D acoustic �eld.

In Fig. 7, examples of the mode shapes are shown for
the 11-th mode shape of which Fig. 7a results of the FEM
analysis and Fig. 7b - the outcome of RBF analysis.
The values of errors shown in Fig. 6 suggest that the

results of the acoustic eigenanalysis in 2D domain are
very accurate (in comparison to FEM analysis), even in
case of eigenfrequences near to each other.

6. Three-dimensional acoustic �eld

In case of 3D acoustic �eld the �rst NI ×N elements
(NI is a number of collocation points, N is a number
of MQ RBF functions used in approximation) of the ap-
proximation matrix A (see Eq. (8)) are given by:

Ai,j =
∂2

∂x2

∣∣∣∣∣
(x,y,z)=(xi,yi,zi)√

(x− xj)2 + (y − yj)2 + (z − zj)2 + c2

+
∂2

∂y2

∣∣∣∣∣
(x,y,z)=(xi,yi,zi)

Fig. 7. The 11th mode shape of 2D acoustic �eld: (a)
result of FEM analysis (b) MQ RBF analysis.

√
(x− xj)2 + (y − yj)2 + (z − zj)2 + c2

+
∂2

∂z2

∣∣∣∣∣
(x,y,z)=(xi,yi,zi)√

(x− xj)2 + (y − yj)2 + (z − zj)2 + c2

+k2
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + c2. (24)

The last NB (number of boundary points) rows of ma-
trix A depend on boundary conditions:

Ai,j =
∂

∂n

∣∣∣∣∣
x,y,z∈Γ√

(x− xj)2 + (y − yj)2 + (z − zj)2 + c2. (25)

In the above equation ∂
∂n is the directional derivative

of RBF in the direction of the outward pointing normal
n to the boundary line Γ:

∂φ(r)

∂n
= ∇ϕ(r) · n. (26)

To obtain a nontrivial solution (α = 0), the determi-
nant of the matrix A must be zero i.e. detA = 0. From
this equation the natural frequencies are calculated.
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6.1. Comparison of results

For the purpose of validation of the proposed method,
in 3D simple rectangular parallelepiped cavity was ana-
lyzed. All calculated eigenfrequency were compared with
exact (analytical) results. The following relative error
was used to measure the quality of the numerical solu-
tion (superscript 'exact' denotes analytical results and
superscript 'RBF' - approximation with RBF:

Eωi =

√
(ωexact

i − ωRBF
i )2

(ωexact
i )2

· 100%, (27)

where ωi is the i-th natural frequency of acoustic �eld.
The value of error Eωi computed for the �rst 25 eigen-

values (i = 1, 2, . . . 25) is shown in Fig. 8.

Fig. 8. Errors in MQ RBF eigenanalysis of 3D acoustic
�eld.

The values of errors shown in Fig. 8 suggest that the
results of the 3D acoustic �eld with MQ RBF are very
similar to analytical results.

7. Summary and concluding remarks

In this paper, a meshless method for acoustic eigen-
analysis in 1D, 2D and 3D domain is described. The
study presented herein concerns applications the MQ
RBS to �nding approximate solution of the Helmholtz
equation, searching for the natural frequency (eigenfre-
quency) and reconstruction the solution (eigenvectors).
In case of 1D domain, simple 2D rectangular domain and
3D rectangular parallelepiped domain, all results have
been compared against analytical ones.
The proposed method revealed to be very accuracy in

the search of eigenfrequencies even in case of eigenfre-
quencies near to each other.
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