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In this work, positron annihilation lifetime spectroscopy was used for the structural characterisation of porous
materials prepared from amorphous zeolite precursors acting as the starting materials and hexadecyltrimethy-
lammonium bromide acting as a mesoporous template. The best �ts of the obtained lifetime spectra provide a
four-component exponential decomposition. The lifetime values of the long-lived components point to the presence
of mesoporous voids. Infrared and X-ray analyses show that the obtained materials consist partly of a crystalline
zeolite structure.
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1. Introduction

Zeolites are speci�c crystalline microporous materials
used in adsorption, catalysis, ion-exchange, molecular
sieving etc. [1]. Still, in some applications, for exam-
ple in catalysis, microporous channels can be a restrict-
ing factor, as the di�usion of bulkier molecules within the
structure is limited which reduces the functionality of the
zeolite material [2]. Therefore, introducing mesoporosity
into the microporous zeolite structure, or producing ma-
terials with both micro- and mesoporosity could, at the
same time, retain zeolite properties and help to remove
limitations [3].
Positron annihilation lifetime spectroscopy (PALS) has

become a well-proven technique in the structural charac-
terisation of zeolites [4�6]. The study covered changes
of the void sizes in�uenced by the presence of non-
-framework cations [7], water molecules [8�10], phase
transitions [11] or cluster formations [12]. PALS was
also successfully used in investigating mesoporous voids
present in silica gel structures [13�15], in ordered meso-
porous silica materials [16, 17], and in investigating the
presence and removal of a mesoporous template from the
structure [18�20].
In this work, PALS was used for the characterisation

of porous materials obtained from amorphous zeolite pre-
cursors and hexadecyltrimethylammonium bromide act-
ing as a mesoporous template.

2. Experimental

The chemicals used for the syntheses were: fumed
silica (SiO2, Sigma-Aldrich), sodium hydroxide (NaOH
98%, Kemika), sodium aluminate (NaAlO2, Riedel de
Haen), tetrapropylammonium bromide (TPABr 98%,
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Sigma Aldrich) and hexadecyltrimethylammonium bro-
mide (CTAB 98%, Alfa Aesar). The amorphous ze-
olite precursor (original gel) with the molar composi-
tion 12.5Na2O·Al2O3·60SiO2·8TPABr·4000H2O was pre-
pared according to Ref. [21]. Modi�cations of the original
gel included the following steps: (1) ageing of the original
gel for 720 h at room temperature (RT) (modi�cation-1),
and (2) preparing the same original gel but without
TPABr (modi�cation-2). The mesoporous template,
CTAB, was then added to the prepared precursors (molar
ratio CTAB/SiO2 = 6). The syntheses were performed
at 80 ◦C for 72 h and subsequently at 120 ◦C for 48 h in
static conditions. The synthesized samples were calcined
in air at 550 ◦C for 5 h.
The PALS measurements were conducted with a mod-

i�ed version of a digitized positron annihilation lifetime
spectrometer [22]. In the present setup, the conical BaF2

scintillators (bases of 2.5 cm and 5 cm, and height of
2.5 cm) coupled to the XP2020 URQ photomultiplier
tubes were used along with the same signal processing
and data acquisition chain as in [22]. The time window
in the measurements was 100 ns, with the source activ-
ity approximately 1 MBq and achieved time resolution
about 220 ps. For the each sample, approximately 106

annihilations were recorded. The infrared transmission
(FTIR) spectra of the samples were made using the KBr
wafer technique. The spectra were recorded in the mid
IR region (4000�400 cm−1) on the Spectrometer System
2000 FTIR (Perkin�Elmer). The powder X-ray di�rac-
tion (XRD) spectra of the samples were taken using a
Philips PW 1820 di�ractometer equipped with a verti-
cal goniometer, and using Cu Kα radiation in the corre-
sponding region of Bragg's angles (2θ = 4�100◦).

3. Results and discussion

The PALS spectra of the samples taken before and
after the synthesis, as well as after the calcinations have
been analyzed using the LT 9 �tting program [23]. The
lifetime and intensity values of the long-lived components
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(τ3, I3 and τ4, I4) were obtained using the best �ts as
shown in Table. They correlate to the o-Ps annihilation
in voids inside the structure. The sizes of those voids can

be determined using the Tao�Eldrup model for lifetimes
up to 10 ns [24, 25] or using modi�ed the Tao�Eldrup
model for longer lifetimes [26].

TABLE
The lifetime and intensity values of the long-lived components (τ3, I3 and τ4, I4) of the samples prepared from: (a) the original
gel, (b) modi�cation-1, and (c) modi�cation-2. Errors in parenthesis.

Sample (a) original gel (b) modi�cation-1 (c) modi�cation-2

τ3 [ns],I3 [%]; τ4 [ns],I4 [%] τ3 [ns],I3 [%]; τ4 [ns],I4 [%] τ3 [ns],I3 [%]; τ4 [ns],I4 [%]

before synthesis 4.05(0.02),9.4(0.2); 28.3(0.3),4.62(0.08) 3.21(0.01),11.6(0.1); 24(1),0.68(0.01) 4.28(0.01),10.75(0.03); 25.9(0.5),2.02(0.02)

after synthesis 3.70(0.02),10.3(0.1); 16.1(0.3),1.08(0.02) 3.788(0.009),14.47(0.03); 29(1),0.80(0.01) 3.50(0.02),11.7(0.1); 27(1),0.74(0.02)

after calcination 4.2(0.2),3.86(0.08); 31.1(1.7),11.0(0.4) 4.2(0.2),1.81(0.03); 36.0(0.3),11.20(0.07) 3.84(0.05),2.46(0.02); 34.6(0.05),12.47(0.02)

The presence of the mesoporous template in the sam-
ples before synthesis is shown in the FTIR spectra at
the bands of ≈ 2920, 2850, 1483, and 730 cm−1 [27]
(Fig. 1). In the PALS spectra, the third lifetime com-
ponents, τ3, with values from 3.21 to 4.28 ns and I3 of
approximately 10% (Table), are assigned to the o-Ps an-
nihilation in a mesoporous template interior [19, 20]. The
lower τ3 values for modi�cation-1 compared to the other
samples could be due to a higher packing parameter of
the mesoporous template which in turn are caused by a
higher charge density of the silica species (formed dur-
ing RT ageing of the modi�ed original gel [21, 28]) that
surround the template [29]. The τ4 values in all samples
before synthesis range from 24 to 28 ns, with low I4 val-
ues (Table). They can be ascribed to the voids between
the aggregates of the mesoporous template and the silica
species.

Fig. 1. FTIR spectra for the samples prepared
from: (a) the original gel, (b) modi�cation-1 and
(c) modi�cation-2. Spectrum A � sample before syn-
thesis, spectrum B � sample after synthesis and spec-
trum C � sample after calcination.

In the samples after synthesis, the τ3 values, connected
to the template presence, are from 3.5 to 3.7 ns and
the corresponding I3 values remain high (Table). This
�nding is consistent with the polymerisation of silicate
species and thickening of the wall around the template
micelle during synthesis [30, 31], which reduces the free
space in the template interior and consequently the τ3
values. At the same time, inter-aggregate condensation
takes place [29], which in�uences the τ4 values (Table)
while the intensity, I4, values remain low.
The FTIR spectra of the samples after synthesis and

calcination (Fig. 1) show several characteristic features.
The changes of the bands at ≈ 1220 and ≈ 1050 cm−1

indicate the formation of an ordered zeolite structure
[21, 30]. The band at ≈ 570 cm−1 indicates the presence
of structural units (double �ve rings � D5R) character-
istic of a pentasil zeolite structure [28, 32].
After the calcinations, the τ3 values of the samples are

from 3.8 to 4.2 ns, whereas the I3 values decrease as
compared to the I3 values in samples after the synthesis
(Table). At the same time, both τ4 and I4 values increase
(Table). The decrease in I3 values is connected to the
template removal from the samples, which is also shown
by the disappearance of the bands in the FTIR spectra
characteristics for the template (Fig. 1, spectra C). How-
ever, some of the template is still present in the samples
as indicated by the low I3 values [20]. The sizes of the
voids, which emerged after removing the template, are
≈ 2.2 nm as estimated from the τ4 values.
The X-ray di�ractograms of the calcined samples are

shown in Fig. 2. Broad amorphous peaks are character-
istic for all samples. Di�raction pattern characteristic
for crystalline zeolite superimposed on the broad peak
in the sample prepared from the original gel (Fig. 2,
di�ractogram A) imply zeolite structural features in the
obtained material [33], whereas short range order in the
other calcined samples, seen by FTIR, remain undetected
(Fig. 2, di�ractograms B and C).

4. Conclusion

Using PALS we have studied formation of mesoporous
materials from zeolite precursors and mesoporous tem-
plate. Long lived components, τ3 and τ4, show presence
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Fig. 2. X-ray di�ractograms of calcined samples ob-
tained by synthesis from: the original gel (di�rac-
togram A), modi�cation-1 (di�ractogram B), and
modi�cation-2 (di�ractogram C).

of the template and created voids by calcination, respec-
tively. Following calcination, a decrease in I3 and an
increase in I4 values show the removal of the mesoporous
template. The sizes of voids formed after removal of the
template and estimated from the τ4 values are ≈ 2.2 nm.
The FTIR and XRD results show presence of some ze-
olite structural units in the obtained materials. This
leads to the conclusion that materials obtained by the
applied synthesis procedure possess voids in mesosized
ranges within a partial zeolite structure.
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