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1. Introduction

In this paper we discuss applicability of the positron
annihilation lifetime spectroscopy (PALS) for the deter-
mination of a nanoheterogeneity of water�alcohol solu-
tions, relying mainly on the data published in [1]. We
shall see that PALS is a promising method for detection
of nanostructures in a condensed matter.

Fig. 1. o-Ps intensity (• [3]) and lifetime ( � with-
out CoCl2, and ◦ � with addition 0.4 M CoCl2) in
binary water�1-propanol mixtures at room tempera-
ture [1]. Statistical uncertainties are 5�10%.

Variations of the o-Ps lifetime in binary mixtures of
water�1-propanol at room temperature are shown in
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Fig. 1 [1]. At low alcohol mole fractions (m.f.) � from
0 to 0.1 � the o-Ps lifetime sharply increases from its
value in pure water (≈ 1.8 ns), to the value in 1-PrOH
(≈ 2.9 ns). It is noteworthy that the propanol value is
reached when 1-PrOH m.f. is not a unity, but ten times
less and remains unchanged throughout the following rise
of the propanol content.

2. Discussion

What is the cause of the rapid rise of the o-Ps lifetime
at small alcohol concentration?
The �rst reason could be a replacement of water

molecules on the surface of the Ps bubble by alcohol
molecules. Their adsorption leads to a three times reduc-
tion of the surface tension of the Ps bubble. It increases
the bubble size and, therefore, increases o-Ps lifetime [2].
However, we shall see that this e�ect is mostly important
at high alcohol concentration.
We attempt to show that a more likely reason for the

sharp increase of the o-Ps lifetime is the nanoheteroge-
neous structure of the water�alcohol mixture in the range
of propanol mole fractions from 0.1 to 0.4 where the mix-
ture represents an emulsion (alcohol nanomicelles are sus-
pended in water).
In PALS experiments such a structure of water�

1-PrOH solutions can be revealed via speci�c variation
of the o-Ps lifetime and o-Ps intensity vs. propanol con-
centration (with and without an addition of CoCl2 salt
into water�1-PrOH mixture). Paramagnetic Co2+ ions
e�ciently interact with the o-Ps atoms, causing their con-
version into short-lived p-Ps state [1]:

o-Ps(↑↑) + Co2+(↓)→ p-Ps(↑↓) + Co2+(↑). (1)
In water this ortho�para conversion process leads to

a twofold reduction of the o-Ps lifetime (Fig. 1). How-
ever, with addition of the alcohol, the conversion rate
rapidly decreases and at propanol mole fractions 0.1�0.4
the o-Ps lifetime becomes the same as in pure 1-PrOH.
In this concentration interval o-Ps atoms do not �feel�
the presence of neither Co2+ ions, nor water molecules.
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This fact implies that o-Ps atoms and Co2+ ions are lo-
cated mostly in di�erent phases � water and alcohol
nanodroplets (nanomicelles).
This separation stems �rstly from the fact that Co2+

ions are known to be hydrophilic. Secondly, the sum of
the Ps �zero� energy, E0 = π2~2/4mea

2
Ps, and the surface

energy Es = 4πa2Psσ of the Ps bubble, Es + E0 ∝ σ−1/2,
decreases when the Ps atom transfers from the aqueous
phase into the alcohol one. So alcohol micelles may trap
Ps atoms.
Independence of the o-Ps lifetime vs. Co2+ concen-

tration at propanol m.f. = 0.1�0.4 is a manifestation of
the emulsion structure of the water�propanol mixture as
well as impossibility of Co2+ ions to penetrate inside the
propanol micelles. Formation of tightly bounded charged
aqua-complexes Co2+·(H2O)6 at propanol m.f. < 0.5 [1]
supports this conclusion.
As another con�rmation of the emulsion structure

comes from the concentration behavior of the intensity
of the o-Ps component (Fig. 1). At m.f. = 0.04�0.1 the
o-Ps intensity decreases, while the o-Ps lifetime rapidly
increases due to migration of o-Ps atoms from water into
alcohol micelles. Drop of the o-Ps intensity occurs due
to spatial separation of the Ps precursors (the positron
and track electrons). Electrons are mainly captured by
micelles and get solvated therein, while a hydrophilic
positron predominantly resides in an aqueous phase (out-
side micelles). Such a separation occurs due to speci�c
orientation of polar molecules in the surface layer of the
micelles [4].
Now we need to understand the reasons for the dif-

ferent behavior of the o-Ps lifetime in highly concen-
trated 1-PrOH solutions (m.f. > 0.4, the volume fraction
> 0.73) with and without Co2+ ions. In binary water�
1-PrOH mixtures in the absence of the Co2+ ions the
o-Ps lifetime remains constant and its value is equal to
the o-Ps lifetime in pure 1-PrOH. This means that only
propanol molecules occupy the boundary of the o-Ps bub-
ble, and water molecules have no chance to be adsorbed
there because of their appearance would increase the to-
tal energy of the Ps bubble. It is notable that the inten-
sity of o-Ps component is also close to its value in pure
1-PrOH (Fig. 1).
In mixtures with Co2+ ions the reduction of o-Ps life-

time takes place. It is a result of renewed contacts be-
tween Co2+ ions and o-Ps atoms.
The probable process which facilitates penetration of

Co2+ ions to the Ps bubble boundary is the following.
At high concentrations of alcohol cobalt aqua-complexes
gradually lose their charges by including chlorine anions
in their solvation shells. The complexes replace also the
water molecules with molecules of 1-PrOH [1]:

Co2+(H2O)6 → Co2+(PrOH)2(Cl
−)2. (2)

These electroneutral complexes of Co2+ ions with alcohol
solvation shells instead of aqueous ones may easily reach
boundaries of Ps bubbles, decreasing o-Ps lifetime, Fig. 1.
Now let us estimate the number N of alcohol molecules

in a typical alcohol micelle in the above mentioned water�

alcohol mixture. Motion of the Ps bubble in a liquid
is of a di�usion character. Its di�usion coe�cient may
be estimated using the Hadamard�Rybchinsky formula
DPs = kBT/(4πaPsη) [5]. Here kB is the Boltzmann con-
stant and aPs is the Ps bubble radius. In water at room
temperature aPs ≈ 3.2 Å [2], viscosity is η ≈ 1 cP, so
DPs ≈ 10−5 cm2/s.
To obtain N , we equate the Ps di�usion length√
6DPs(1 ns) (1 ns is the typical lifetime of the Ps atom

in water) to the average distance between micelles, which
is (ca/N)−1/3, here ca is the propanol concentration.
Thus

N ≈ ca [6DPs(1 ns)]3/2 ≈ 40�60 molecules. (3)

To con�rm �ndings, obtained by PALS, let us make
use of additional, non-positron experimental data. From
Fig. 2 it is seen that the viscosity of the mixture vs.
1-PrOH concentration has a non-monotonic behavior. It
reaches a maximum at m.f. = 0.1�0.4. Appearance of the
emulsion (with alcohol nanodroplets) may explain exis-
tence of this maximum. Einstein found the relation be-
tween relative viscosity η(φ)/η0 of suspension of particles
and their volume fraction φ: η(φ)/η0 = 1+Aφ [7]. Here
φ � 1 and A is a numerical coe�cient. In our case this
relation looks like

η(φPrOH)/ηH2O = 1 +AφPrOH. (4)
For spherical particles A = 2.5 and increases for both
oblate and prolate spheroids, Fig. 3. Taking into account
that the volume of a 1-PrOH molecule is four times larger
than the volume of a water molecule, we obtain from
Eq. (4) a quantitative prediction for the relative mixture
viscosity growth at low propanol mole fractions, Fig. 2.
At A = 2.5 the agreement with experimental data is only
qualitative (dashed curve). For better �t it is necessary
to adopt A = 4.2, which is suitable for the particles of

Fig. 2. Relative viscosity η(xPrOH)/ηH2O of water�1-
-propanol mixture at 298 K [6]. Dotted curve � viscos-
ity predicted by Eq. (4) with A = 2.5; dashed curve is
obtained with A = 4.2.
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Fig. 3. Values of A coe�cient in Eq. (4) for spheroidal
particles, a and b = c are spheroidal axis [7].

Fig. 4. Coe�cient of light scattering, R, in water�
1-propanol mixtures [8].

ellipsoidal shape. This shape suits better to model the
emulsion droplets, exposed to continuous deformations
from the solvent molecules.
Another argument in favor of the nanoemulsion struc-

ture of the investigated mixture is the presence of a broad
peak of the light scattering intensity, Fig. 4. In [8] it was
found that this peak is due to large �uctuations of con-
centration of mixture components. Let us note that the
narrow peak at propanol m.f. = 0.05 is not related to
concentration �uctuations [8]. It is consistent with our
view of a structure of the emulsion solution.

3. Conclusion

PALS experiments in water�1-PrOH mixtures with ad-
dition of paramagnetic ions give strong arguments in fa-
vor of nanoemulsion structure of the mixture (alcohol
micelles) at propanol mole fraction from 0.1 to 0.4. Mea-
surements of viscosity and light scattering in this system
give independent con�rmations of this conclusion.
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