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Influence of Many-Body Effects in Real Metals
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It is shown that if one takes into account the effective mass of the electron, which in real structures is
actually different than the free electron mass, the electron and positron self-energy effects may result in flatter and
smaller enhancement of the electron—positron momentum distribution. Thus, the many-body effects mentioned
above, among other reasons like e.g. influence of lattice potential on electron and positron wave functions, can be
responsible for decreasing of the discontinuity on the Fermi momentum and a greater smearing of the Fermi surface
seen in several angular correlation of positron annihilation radiation experiments.

DOI: 10.12693/APhysPolA.125.706

PACS: 78.70.Bj, 71.18.+y, 71.60.+z, 71.15.Mb, 71.10.Ca

1. Introduction

Angular correlation of positron annihilation radiation
(ACPAR) is one of important methods of investigating
the electronic structure of solids [1, 2]. These investi-
gations are usually supported by theoretical calculations
which, by applying advanced methods, help in the inter-
pretation of the results [1, 3]. These studies base, how-
ever, on the old but commonly accepted result of calcu-
lations of Carbotte and Kahana [4], that the momentum
distributions which result from dynamical electron elec-
tron (e—e) and electron—positron (e—p) interactions, due
to some cancellations, can be neglected above the Fermi
surface.

The hitherto applied theoretical methods cannot, un-
fortunately, take at the same time into consideration
all many-body effects and the crystal-lattice potential.
Thus, these methods base on enhancement factors de-
scribing an increase of electron density due to the e—p
interaction, applied mostly in the local density approx-
imation [5]. The recognized attempt to include lattice
effects into the e—p interaction was the Bloch modified
ladder approach [6]. This approach is, however, not self-
-consistent and neglects dynamic e-e and e—p interac-
tions. Moreover, the calculations are very tedious and
requiring a lot of computational time [6].

In last years some relatively complicated Fermi sur-
faces have been studied experimentally by angular cor-
relation of annihilation radiation and interpreted with
advanced formalisms [3, 7, 8]. Interestingly, some results
indicated a similarity to data yielded from the Comp-
ton experiments, characterized usually by high smearing
of the Fermi surface emerging due to strong electron—
electron correlations and considerable tails. A possibility
of occurring tails have been considered by Manuel et al.
[9] when interpreting ACPAR curves. In turn, the ex-
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traordinary smearing of the Fermi surface was attributed
[3, 10] to a considerable contribution of the e-e correla-
tions in electron—positron momentum distributions.

The attempt to explain whether these many-body tails
have to vanish in real structures as well as in the case of
the positron in the electron gas has been undertaken in
Ref. [11]. Following Carbotte and Kahana [4], within
the Green function formalism to the first order, the au-
thors showed that for effective masses of electrons greater
than free electron mass the contributions from dynamic
e—p interaction and electron (e.s.e.) and positron self-
-energy (p.s.e.) effects do not enough effectively cancel
each other. Therefore the e—p distributions change and
the tails cannot be negligible.

Since the previous calculations have been made to the
first order in perturbation series, in this paper one tries to
correct the results by multiplying them by an appropriate
enhancement factor which is found in the ladder approxi-
mation to the e—p scattering amplitude. The calculations
are performed on the base of the Bethe—Goldstone-like
equation at the assumption that the effective mass of the
electron can differ from the free electron mass and that
electrons may scatter with some probability into the re-
gion of momenta p < pr as well as to p > pp [12, 13].
The final influence of the self-energy effects for differ-
ent values of electron effective masses on the momentum
distributions for p < pr and p > pr and the possible
consequences on the smearing of the Fermi surfaces are
shown in Sect. 3.

2. Theory

The momentum distribution of the annihilating e—p
pair can be presented in terms of the two-particle Green
function [4]:

p(p) = (i)? / Bzdyexp (—ip - (z — y))

X Gep(xt, xt;yt ™, yt). (1)
The partial annihilation rate R(p) for the total mo-
mentum p of the e—p pair is related to p(p) simply by
A/ 2 p(p), where A is the relation of the annihilation rate
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for the positronium in its singlet state to the positronium
density, and (2 is the volume of the crystal. Within the
ladder approximation (Fig. 1) the Gep(xt, zt; ytt, yt™)
can be determined by the Bethe—Goldstone amplitude
which corresponds to electron—positron wave function
that has been found by many authors for the electron gas
[14-16]. For the positron in the electron gas it yields the
enhancement factor £(p) which describes how the prob-
ability density of unperturbed electronic states changes
due to e—p interaction. For real metals one often ap-
proximates the two-body wave function by a product of
the Slater determinant of one-electron orbitals ¢ (r), the
positron wave function ¢, (r) and a factor which is, in
general, a complicated functional of electron and positron
wave function but approximately can be linked to an en-
hancement factor ¢, in e.g. the LDA approximation, by
the relation

V2 =e. (2)
Then R(p) reads

R(p) = 5 S 3)
ki

2
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where p is the wave vector corresponding to the total
momentum of interacting e—p pair, k is the wave vec-
tor of the electron undisturbed by the positron and ¢ is
the band index. The values of the occupation number
ng,; may differ from 1 only due to lattice or temperature
effects.

X

Fig. 1. The ladder approximation leading to the
Bethe-Goldstone equation [13, 14]. Solid line — elec-
tron propagator, double dashed line — positron prop-
agator. The horizontal dashed line represents the
screened static RPA interaction.

In general, the two-particle propagator in Eq. (1) cor-
responds to an infinite series of the Feynman diagrams.
This expansion, in particular, consists of terms with elec-
tron and positron self-energy and e—p interaction contri-
butions, and the e—e and e—p potentials are dynamic.
Certainly, the approximation (3) does not take into ac-
count that each particle can interact with itself through
the polarizable medium, moreover the potential neces-
sary to find y(k, i, 7s(r)) in (3) is mostly static. This kind
of approximation has been, however, commonly used for
its simplicity. The next argument for using the above
approach comes from Carbotte and Kahana [4] who have

shown for the positron in the electron gas that replacing
the dynamic potential by static one only weakly changes
the e—p momentum distribution for p < pg, and for
p > pr the values of this distribution are negligible owing
to an effective cancellation of self-energy and the dynamic
e—p interaction contributions. This cancellation applies
also in higher orders of perturbation series.

Can the reduction of the mentioned effects be so effec-
tive for real metals? The approach proposed in Ref. [11]
and the results contradict this statement. The authors
propose a simple model in which an electron (eventually
the positron) in a real metallic structure can be charac-
terized by an appropriate effective mass, different from
the free electron mass. Then, in a free electron and
positron propagators

O (qi) — O ~la)
e h2q%/2me — w + 10T

0(lg| — kr)
h2q2/2me —w — i0T’ )

0(—q)
0/( . —
Gp(qaw) - h2q2/2me w4+ i0+

0(q) 5)
h2q2/2me —w — i0T’
the corresponding free electron (positron) mass is re-
placed by an effective one

Me —> MM,

mp — Memy,. (6)
On this basis the dynamic e—e and e—p potentials are de-
termined within the RPA approximation and then the
e.s.e. and p.s.e. contributions (Fig. 2) are calculated. As
shown [11], the mutual reduction of these contributions is
weaker if the effective mass of the electron increases and
the many-body tails in momentum distributions are no
more negligible. This can confirm the hypothesis [10] on
the meaning of dynamical correlations in e—p momentum
distributions.

Fig. 2. The diagrams represent the first order elec-
tron (solid line) and positron (double dashed line) con-
tributions to momentum dependent annihilation rate:
(a) electron self-energy correction, (b) positron self-
-energy correction, (c) electron—positron ladder dia-
gram. The frequency dependent RPA potential is used
as the dynamic interaction (zigzag line).
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As mentioned, the calculations [4, 11] have been per-
formed for the first order diagrams. The approach can
be improved by multiplying [4] the first order terms in
the expression for the e-p momentum distribution by an
enhancement factor £(p). Thus, the e-p momentum dis-
tribution p(p) could be approximated as

o) = [0 () + P2 0) + PV D) ep). (D)

where ¢(p) is the enhancement factor (p(*)(p) stands for
the first order dynamic ladder correction to the p(p)).
This means that instead of full perturbation expansion
of R(p) with dynamic potential and self-energy effects
in all orders, the infinite series of ladders (with a static
potential) is added to the first order diagrams in which
the self-energy effects and e—p interaction are described
by the dynamic RPA potential. The enhancement fac-
tors calculated according to such a scheme should not
be limited to the range of p < pr (in general this quan-
tity can be defined for the whole regime of electron mo-
menta, however, the approximation used by Kahana [14]
limited it to the region p < pr). The approach presented
in Ref. [12] fulfills this requirement. It uses the Bethe-
Goldstone-like equation for the thermalized positron and
the electron in the initial state p:

1 1
x(k,p) = QT+ (k—pP -7 (8)

e

<{u(lle = pl,0) + Y_[1  n(g)u(lg — pl.0)x(a.p) }-

In Eq. (8) some self-energy effects are [12, 13], though
approximately, included in all orders, allowing electrons
to be scattered with some probability to any states be-
low and above the Fermi surface, and excluding the case
when k = p. u(|k|,0) is the e—p interaction in static RPA
approximation. ng are the occupation numbers (corre-
sponding to the Daniel and Vosko distribution [17]) cal-
culated within the RPA approximation.

Then the corresponding formula for v(p; ) reads

Y(pirs) =14 > (1= ng)x(k,pirs) (9)
k
and, with the use of (2), the momentum dependent en-
hancement factor can be calculated from (9).

In our effective mass model one replaces the denomi-
nator in (8) by the following expression:
h2k2 N hz(k: _ p)2 h2p2

* * *
2my 2mj 2m?

(10)

in which the free electron and positron mass has been
replaced by the appropriate effective masses. Respec-
tively, the occupation numbers n(q) and the e—p inter-
action u(|g — pl|,0) have been changed. The calculation
procedure requires also that the singularities for k = p
have to be taken into account. This is solved in the anal-
ogous way as in Ref. [12], but the fraction k/p in the
Legendre functions in the formula (13) of Ref. [12] is re-
placed by (k? 4 p?)/2kp and the integral in this formula
is additionally multiplied by m}/ my,. The procedure de-

scribed above yields for different electron effective masses
the enhancement factors as well as total e-p momentum
distributions to all orders in perturbation series.

3. Results

According to Egs. (8), (9) and (2) we have found the
enhancement factors corresponding to electron density
parameter s = 2 and various effective masses of the elec-
trons: mf = 1,m’ = 5,m} = 10 (Fig. 3). Of course, in
principle this is not a trivial matter to accept any real-
istic values for the effective masses, as they are tensors
and many effects contribute to, however, to estimate the
effect [11] one could take some known values for m; from
e.g. Table (2.3) of Ashcroft and Mermin book [18]. The
results for m* = 1 presented [12] for p < pp resemble the
ones calculated by Kahana and later authors, and their
dominant feature is a strong momentum dependence. For
p > pr the values of the enhancement dynamically go
down as the cross-section for scattering of two particles
decreases with their velocity. For greater masses, how-
ever, the curves become lower than for m} = 1 and quite
flat. This means that the e—p interaction is not strong
enough to change the density of heavier electrons in its
neighbourhood.
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Fig. 3. The enhancement factor for rs = 2 and dif-
ferent effective masses of electrons, calculated on the
base of Bethe-Goldstone equation in which electron
self-energy effects are approximately taken into ac-
count [13], solid line.
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Fig. 4. The momentum distribution for ¢ = 2 and dif-

ferent effective masses of electrons (a), and smeared with
the resolution function of FWHM = 0.1 (b).
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The momentum distributions, as results of product of
the enhancement factors by the sum of first order terms,
according to Eq. (7), are presented in Fig. 4a. For m? =1
there are only few electrons possessing enough high mo-
menta to be above the Fermi surface, so the total curve
corresponding to the momentum distribution still breaks
rapidly at pr and the high momentum tail is negligi-
ble (Fig. 4a), confirming the old result of Carbotte and
Kahana [4] and the recent Monte Carlo result of Drum-
mond et al. [20]. However, for greater effective masses
the tails substantially grow up. At the same time the
distributions below pr become more flat and the differ-
ence is evidently seen near the Fermi momentum. What
is more, for m* = 10 (and possibly for bigger masses)
one can observe that below pg the values of the distribu-
tion function considerably decrease. Thus, in general, the
discontinuity at the Fermi momentum decreases when in-
creasing the values of the effective mass of the electrons.
In order to see how the resolution function of the mea-
suring devices could influence the presented results, we
have additionally calculated the convolution of the e—p
momentum distribution functions with the Gaussian of
FWHM = 0.1, so the corresponding curves have been
smeared off. The results are presented in Fig. 4b. The
visible tails corresponding to m} > 1 are quite substan-
tial and can be observed up to 2pg.

4. Conclusions

The improvements presented in the second part of
Sect. 2 allow for more realistic estimation of the influence
of the self-energy effects and different electron effective
masses on the e-p momentum distributions. The prob-
ability that the electron of the momentum p > pr can
be scattered to lower or higher states is quite high. Cer-
tainly, the number of such electrons is very low for rg = 2
and for the effective mass equal to the mass of a free elec-
tron, however if one assumes that this mass can be higher,
then owing to the self-energy effects, the number of these
electrons grows up and the effect becomes meaningful.
It leads to arising of substantial many-body tail in mo-
mentum distributions for high momenta. The self-energy
effects change also the distributions below the Fermi mo-
mentum. In particular, for higher effective masses of elec-
trons these distributions become more flat and enhance-
ments are, in general, lower than those calculated for
m? = 1. In general, when taking into account higher ef-
fective electron masses the effect of dynamic correlations
on theoretical e-p momentum distributions become simi-
lar to those observed in the Compton experiments. Thus,

as was shown in the previous section, the self-energy ef-
fects in real metallic structures may lead to some extra
smearing of the experimentally seen Fermi surface. This
fact can be quite important for the interpretation of the
experimental data.
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