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In this paper, we apply the local polynomial regression for the solution of the one-dimensional fractional
di�usion equation. The Caputo fractional derivative is used for the formulation. A numerical example is given to
show the application of the present method. The e�ect of the fractional order (α) of the equation is illustrated by
changing α from 1.01 to 1.99.
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1. Introduction

Di�usion equations are an important part of partial
di�erential equations because of their potential applica-
tions in science, engineering, and social sciences. On the
other hand, the fractional derivatives have been started
to apply in several systems in the past few decades. Re-
cently an extensive work has appeared in literature deal-
ing with one- and two-dimensional partial di�usion equa-
tions [1�6].
It is well known that the one-dimensional fractional

di�usion equation is de�ned as:

∂u(x, t)

∂t
= d(x)

∂αu(x, t)

∂xα
+ q(x, t). (1)

To Eq. (1) we attach the initial conditions and bound-
ary condition

u(x, 0) = f(x), 0 ≤ x ≤ 1, (2)

u(0, t) = g0(t), t ≥ 0, (3)

u(1, t) = g1(t), t ≥ 0, (4)

on a �nite domain 0 ≤ x ≤ 1, for t ≥ 0. Here,
d(x) represents the di�usion coe�cient and q(x, t) � the
source/sink function. Sources provide energy or mate-
rial to the system where sinks absorb energy or material.
Equation (1) becomes the classical di�usion equation for
α = 2. It models a superdi�use �ow for 1 < α < 2 and a
classical advective �ow for α = 1 [2].
In this paper, the local polynomial regression (LPR)

is applied for the numerical solution of one-dimensional
fractional di�usion equation. The paper has been orga-
nized as follows. Necessarily theoretical background is
given in Sect. 2. In Sect. 3, LPR solutions for partial
di�usion equation are applied. A numerical example is
presented in Sect. 4.
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2. Theoretical background

In this section, we recall the Caputo fractional deriva-
tive and the local polynomial regression.

2.1. Caputo fractional derivative

There are various kinds of fractional derivatives that
one can use for the fractional calculations. The widely
used fractional derivatives are the Grunwald�Letnikov,
the Riemann�Liouville, and the Caputo fractional deriva-
tives. The Caputo fractional derivative is a regularization
in the time origin for the Riemann�Liouville fractional
derivative [7, 8]. A nice comparison of these de�nitions
from the view point of their applications in physics and
engineering can be found in [9, 10].
In this paper, we use the Caputo fractional derivative

that is de�ned as follows [11]:

Dα
∗x = Jm−αDmf(x) =

1

Γ (m− α)

×
∫ x

0

(x− t)m−α−1f(m)(t)dt (5)

for m − 1 < α ≤ m and m ∈ N . The Caputo fractional
derivative is considered here because the fractional dif-
fusion equation is transformed to the integro-di�erential
equation by using it.

2.2. Local polynomial regression

Suppose that the (p+ 1)-th derivative of x(t) at point
t0 exists. We approximate the unknown regression func-
tion y(t) locally at t0 by a polynomial of order p. The
theoretical justi�cation is that we can approximate, in a
neighborhood of t0, y(t) using a Taylor expansion

y(t) ≈
p∑
k=0

βk(ti − t0)k, (6)

where

βk =
t(k)(t0)

k!
. (7)

This polynomial, used to approximate the unknown func-
tion locally at t0, is obtained by solving a locally weighted
least squares regression problem, i.e. by minimizing
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n∑
i=1

[
Yi −

p∑
k=0

βk(ti − t0)k

]2

K
(ti − t0)

h
, (8)

where h is the smoothing parameter and K is a kernel
function. The local polynomial kernel regression estimate
β is given by β = (XTWX)−1XTWY , where x = ((ti −
t0)i−1)1≤i≤n, 1 ≤ j ≤ p + 1, W = diag[Kh(ti − t0)] the
vectors Y = (Y1, Y2, . . . , Yn)′ and β = (β0, β1, . . . , βp)

′.
A detailed description can be found in [12].
3. LPR solutions for partial di�usion equation
Di�erence schemes for this �rst problem are considered

as following:

ui+1 − ui
∆t

= d(x)
∂αu(x, t)

∂xα
+ q(x, t), (9)

where ∆t = k:

−kd(x)ui+1(α) + ui+1 = ui + kq(x, t) (10)

and the initial conditions are given in (2),

u(x, 0) = f(x) = u0. (11)

Substituting (11) in (10) then is obtained as follows:

t = 0 + k, −kd(x)u
(α)
1 + u1 = u0 + kq(xk), (12)

t = 0 + 2k, −kd(x)u
(α)
2 + u2 = ui + kq(x, 2k), (13)

...
...

t = 0 + nk, −kd(x)u(α)n + un = un−1 + kq(x, nk).

(14)

In this section, the LPR method for solving Eq. (1) is out-
lined. Let Eq. (6) be an approximate solution of Eq. (1):

y(x) =

p∑
j=0

βj(xi − x0)j , (15)

where x1 = α, x2, . . . xn = b and it is required that the
approximate solution (15) satis�es the boundary value
problems at the points x = xi. Putting (15) in (12), it
follows that:

−kd (xi)

p∑
j=m+1

1

γ(m− α)

∫ xi

0

(xi − s)m−α−1

× βjj(j − 1) . . . (j −m) (s− x0)
j−m−1

ds

+

p∑
j=0

βj(x− x0)j = u0 + kq(x, k),

a ≤ t ≤ b, a ≤ s ≤ b. (16)

This leads to the system

i = 1, ai,j = βj(x1 − x0)j , j = 0, p, y(i) = g0(k),

i = 2, n− 1, bij = βj(xi − x0)j , j = 0, p,

cij =
1

γ(m− α)

∫ ti

0

(ti − s)m−α−1 βjj(j − 1) . . .

. . . (j −m) (s− t0)
j−m−1

ds, j = m+ 1, p, (17)

y(i) = u0(i) + kq(xik), (18)

i = n, an,j = βj(xn − x0)j , j = 0,m,

y(i) = g1(k). (19)

Then, the matrix form can be written as follows by using
Eqs. (17)�(19).

X =

a1,0 a1,1 . . . . . . . . . a1,p
b2,0 b2,1 . . . b2,m+1 + c2,m+1 . . . b2,p + c2,p
b3,0 b3,1 . . . b3,m+1 + c3,m+1 . . . b3,p + c3,p
...

...
...

...
...

...

bn−1,0 bn−1,1 . . .bn−1,m+1 + cn−1,m+1 . . .bn−1,p + cn−1,p
an,0 an,1 . . . . . . . . . an,m


,

Y =


y(1)
...

y(n)

 . (20)

Putting (20) in = (XTWX)−1XTWY , then estimated
set of coe�cients βi are obtained by solving matrix sys-
tem. Therefore, approximate solution (15) is obtained.

4. A numerical example

In this section, we consider the following one-
-dimensional fractional di�erential equation, as taken in
the literature [2, 5, 6]:

∂u(x, t)

∂t
= d(x)

∂1.8u(x, t)

∂x1.8
+ q(x, t), (21)

on a �nite domain 0 < x < 1, with the di�usion coe�-
cient

d(x) = Γ (2.2)x2.8/6,

the source/sink function

q(x, t) = −(1 + x)e−tx3,

subject to the initial condition,

u(x, 0) = x3, for 0 < x < 1,

and the boundary conditions

u(0, t) = 0, u(1, t) = e−t, for t > 0.

Note that the exact solution for α = 2 is

y(x) = e−tx3.

TABLE

The maximum absolute errors for m = 5
(polynomial degree) and k = 0.01 (time step).

α n = 11 n = 21

1.01 0.2068903 0.2229955

1.20 0.1952389 0.2086801

1.40 0.1760765 0.1855386

1.60 0.1471001 0.1525271

1.80 0.1044667 0.1051868

1.99 0.0491571 0.0475289

Table shows the maximum absolute errors between for
the known exact solution (α = 2) and for the following
fraction orders: 1.01, 1.20, 1.40, 1.60, 1.80, 1.99. The
behaviour of the solution for di�erent values of α is very
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instructive for the aspect of modelling. It is clearly seen
that the magnitude of the errors decreases by increasing
the fraction order from 1 to 2. For the fractional di�u-
sion equation satisfactory results is received, which are
illustrated by some numerical experiments (see Fig. 1).
All computations are carried out using MATLAB 6.5.

Fig. 1. Results for di�erent values of α.

5. Conclusions

In this paper, the LPR is applied for the numerical
solution of one-dimensional fractional di�usion equation.

The fractional derivative is de�ned in the Caputo sense.
The method is applied on a test problem where the α is
equal to 1.01, 1.20, 1.40, 1.60, 1.80, and 1.99. It may
be concluded that the LPR is very powerful and e�cient
method in �nding solutions for these kind of problems.
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