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This paper is concerned with the numerical solution of the convection di�usion problems. A family of B-spline
methods has been considered for the numerical solution of the problems. The results showed that the present
method is an applicable technique and approximates the exact solution.
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1. Introduction

Di�usion is one of the most important mechanisms in
natural systems. It takes place in solids, liquids and
gases. It can be applied in several problems such as heat
�ow through a medium or the transport of atoms, ions or
molecules under a concentration gradient [1]. It is used
not only in science and engineering but also in mathemat-
ical models in �nance like the Black�Scholes equation [2]
and many other applications. The convection di�usion
equation describes the energy-loss mechanism by a com-
bination of the wave and di�usion equations

∂u

∂t
+ α

∂u

∂x
= β

∂2u

∂x2
, 0 ≤ x ≤ 1,≥ 0, (1)

to Eq. (1) we attach the initial condition and boundary
conditions

u(x, 0) = f(x), 0 ≤ x ≤ 1, (2)

u(0, t) = g0(t), t ≥ 0, (3)

u(1, t) = g1(t), t ≥ 0. (4)

This equation shows the wave equation and the heat
equation (also called Fick's second law) for β = 0 and
α = 0, respectively. The former one conserves the energy
and the latter dissipates the energy. Note that these
losses are not too serious. It means that the coe�cient α
must be very small compared with the coe�cient β [3]. In
our previous work [4], the one-dimensional heat equation
with a nonlocal initial condition is examined by using
the third degree B-splines functions. In this paper, we
have extended previous work on the convection di�usion
equation using a family of B-spline methods. We have
focused on some problems given in [5].

2. The third-degree B-splines

In this section, third-degree B-splines are used to con-
struct numerical solutions to the convection-di�usion
equations discussed in Sects. 3 and 4. A detailed de-
scription of B-spline functions generated by subdivision
can be found in [6].
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Consider equally-spaced knots of a partition : a = x0 <
x1 < . . . < xn = b on [a, b]. Let S3[π] be the space of
continuously-di�erentiable, piecewise, third-degree poly-
nomials on π. That is, S3[π] is the space of third-degree
splines on π. Consider the B-splines basis in S3[π]. The
third-degree B-splines are de�ned as:

B0(x) =
1

6h3



x3, 0 ≤ x < h,

−3x3 + 12hx2 − 12h2x+ 4h3,

h ≤ x < 2h,

3x3 − 24hx2 + 60h2x− 44h3,

2h ≤ x < 3h,

−x3 + 12hx2 − 48h2x+ 64h3,

3h ≤ x < 4h,

Bi−1(x) = B0 [x− (i− 1)h] , i = 2, 3, . . . (5)

To solve hyperbolic equation, Bi, B
′
i and B′′i evaluated

at the nodal points are needed. Their coe�cients are
summarized in Table I.

TABLE I
Values of Bi, B

′
i and B′′i .

xi xi+1 xi+2 xi+3 xi+4

Bi 0 1/6 4/6 1/6 0

B′i 0 −3/6h 0/6h 3/6h 0

B′′i 0 6/6h2 −12/6h2 6/6h2 0

3. B-spline solutions for the convection-

-di�usion equation

In this section a spline method for solving the
convection-di�usion equation is outlined, which is based
on the collocation approach [7]. Let

S(x) =

n−1∑
j=−3

CjBj(x) (6)

be an approximate solution of Eq. (1), where Ci are
unknown real coe�cients and Bj(x) are third-degree
B-spline functions. Let x0, x1 . . . , xn be n+ 1 grid points
in the interval [a, b], so that

xi = a+ ih, i = 0, 1, . . . n; x0 = a, xn = b,

h = (b− a)/n.

(548)

http://dx.doi.org/10.12693/APhysPolA.125.548
mailto:ncaglar@iku.edu.tr


B-Spline Solution for a Convection-Di�usion Equation 549

We consider the convection-di�usion Eq. (1). The di�er-
ence schemes for this problem are considered as following:

ui+1 − ui
∆t

+ α
∂u

∂x
= β

∂2u

∂x2
, (7)

where ∆t = k

−kβu′′i+1 + kαu′i+1 + ui+1 = ui (8)

and the initial condition is given in (2)

u(x, 0) = f(x) = u0, (9)

Substituting (9) in (8) then is obtained as follows:

t = 0 + ∆t, −kβu′′1 + kαu′1 + u1 = u0, (10)

t = 0 + 2∆t, −kβu′′2 + kαu′2 + u2 = u1, (11)
...

...

t = 0 + n∆t, −kβu′′n + kαu′n + un = un−1. (12)

The approximate solutions of Eqs. (10)�(12) are sought
in the form of the B-spline functions, S(x), it follows
that:

t = 0 + ∆t, −kβS′′1 + kαS′1 + S1 = u0, (13)

t = 0 + 2∆t, −kβS′′2 + kαS′2 + S2 = u1, (14)
...

...

t = 0 + n∆t, −kβS′′n + kαS′n + Sn = un−1, (15)

and boundary conditions (3), (4) can be written as fol-
lows:

n−1∑
j=−3

CjBj(0) = g0(t) for x = 0, (16)

n−1∑
j=−3

CjBj(1) = g1(t) for x = 1. (17)

The spline solution of Eq. (13) with the boundary condi-
tions is obtained by solving to the following matrix equa-
tion (see [8, 9]). The value of spline functions at the knots
xi}ni=0 are determined using Table I. Then we can write
in matrix-vector form as follows:

AC = F,

where

C = [C−3, C−2, C−1, . . . , Cn−3, Cn−2, Cn−1]
T
,

F = [g0(k), f(0), f(h), f(2h), . . . , f((n− 1)h), g1(k)]
T
,

T denoting transpose.
The matrix A can be written as

A =



1
6

4
6

1
6 0 0 . . . 0

ϕ1 ϕ2 ϕ3 0 0 . . . 0

0 ϕ1 ϕ2 ϕ3 0 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .

0 0 . . . ϕ1 ϕ2 ϕ3 0

0 0 . . . 0 ϕ1 ϕ2 ϕ3

0 0 . . . 0 1
6

4
6

1
6


,

where

ϕ1 = −kβ
(

6

6h2

)
+ kα

(
3

6h

)
+

1

6
,

ϕ2 = −kβ
(
−12

6h2

)
+ kα

(
0

6h

)
+

4

6
,

ϕ3 = −kβ
(

6

6h2

)
+ kα

(
−3

6h

)
+

1

6
.

It is easy to see that the same approximation is applied
in the other Eqs. (14), (15).

4. Numerical results

In this section, the method discussed in Sects. 2 and 3
is tested on the following problems from the literature [5],
and absolute errors in the analytical solutions are calcu-
lated. All computations were carried out using MAT-
LAB 6.5.
Example 1. Consider problem(1)�(4) with the initial

condition
∂u

∂t
+ 0.1

∂u

∂x
= 0.02

∂2u

∂x2
, 0 ≤ x ≤ 1,≥ 0, (18)

u(x, 0) = e1.17712434446770x, 0 ≤ x ≤ 1, (19)

and boundary conditions

u(0, t) = e−0.09t, t ≥ 0, (20)

u(1, t) = e1.17712434446770−0.09t, t ≥ 0. (21)

By using the procedure discussed in Sect. 3, we obtain
the following spline solution for u1(x, k):

u(x, k) = 9414B−3(x) + 9985B−2(x) + 10591B−1(x)

+ 11233B0(x) + 11914B1(x) + 12636B2(x)

+ 13402B3(x) + 14214B4(x) + 15076B5(x)

+ 15990B6(x) + 16959B7(x) + 17987B8(x)

+ 19078B9(x) + 20234B10(x) + 21461B11(x)

+ 22762B12(x) + 24142B13(x) + 25606B14(x)

+ 27158B15(x) + 28804B16(x) + 30550B17(x)

+ 32402B18(x) + 34367B19(x).

The exact solution of this problem is u(t, x) =
e1.17712434446770x−0.09t. The observed maximum absolute
errors for various values of k and for a �xed value of
n = 21 are given in Table II. The numerical results are
illustrated in Fig. 1.

Fig. 1. Results for ε = 1, n = 91, k = 0.001.
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TABLE II

The maximum absolute errors for problem 1.

n 21

k = 0.1 8.176749601× 10−4

k = 0.01 6.784132768× 10−5

k = 0.001 8.234124001× 10−6

Example 2. Consider the following problem,

∂u

∂t
+ 0.1

∂u

∂x
= 0.01

∂2u

∂x2
, 0 ≤ x ≤ 1,≥ 0, (22)

u(x, 0) = e9x, 0 ≤ x ≤ 1, (23)

u(0, t) = e−0.09t, t ≥ 0, (24)

u(1, t) = e9−0.09t, t ≥ 0, (25)

The exact solution of this problem is u(t, x) = e9x−0.09t.
The observed maximum absolute errors for various val-
ues of n and for a �xed value of k = 0.001 are given in
Table III. The numerical results are illustrated in Fig. 2.

Fig. 2. Results for n = 311, k = 0.01.

TABLE III

The maximum absolute errors for
problem 2.

n k = 0.01

111 0.756921814

311 0.030124416

411 0.014692091

Example 3. Consider the following problem:

∂u

∂t
+ 3.5

∂u

∂x
= 0.022

∂2u

∂x2
, 0 ≤ x ≤ 1,≥ 0, (26)

u(x, 0) = e0.02854797991928x, 0 ≤ x ≤ 1, (27)

u(0, t) = e−0.09t, t ≥ 0, (28)

u(1, t) = e0.02854797991928−0.09t, t ≥ 0, (29)

The exact solution of this problem is (t, x) =
e0.02854797991928x−0.09t. The observed maximum absolute
errors for various values of n and for a �xed value of
k = 0.01 are given in Table IV. The numerical results are
illustrated in Fig. 3.

Fig. 3. Results for n = 111, k = 0.01.

TABLE IV

The maximum absolute errors for
problem 3.

n k = 001

21 0.004306553

61 0.003125393

111 0.00269470629460

5. Conclusions

A family of B-spline methods has been considered for
the numerical solution of the convection-di�usion equa-
tions. The third-degree B-spline has been tested on
the convection-di�usion problems, and has tabulated the
maximum absolute errors for di�erent values of n and k.
As is evident from the numerical results, the present
method approximates the exact solution very well. Also
the numerical results are illustrated in �gures. The im-
plementation of the present method is more computa-
tional than other numerical techniques.
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