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Hexagonal boron nitride (h-BN) and hexagonal boron nitride-titanium diboride (h-BN-TiB2) composites are
advanced materials for high-tech applications. They were investigated against gamma radioisotope sources Cs-137
and Co-60 which have gamma peaks 0.662 MeV for Cs-137, and 1.17 and 1.33 MeV for Co-60. Materials have
been produced at 1800 ◦C temperature in argon atmosphere without pressure during 2 h time. Linear and mass
attenuation coe�cients were calculated for the materials. Gamma transmission technique was used in the experi-
ments. The experimental investigated mass attenuation coe�cients of the materials for Cs-137 and Co-60 gamma
radioisotope sources were compared with XCOM computer code. For h-BN-TiB2 composites the ratio of TiB2 in
the composites is 55% by weight. So gamma attenuation e�ects of adding TiB2 to h-BN were discussed. It could
be said that adding TiB2 to h-BN increases the linear gamma attenuation of the samples.
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1. Introduction
Hexagonal boron nitride has important properties such

as high temperature resistance, thermal shock resistance,
high thermal conductivity, poor wettability [1]. h-BN
has many application �elds in some industries which in-
clude automotive, glass, high temperature applications,
cosmetic and steel industry [2, 3]. There are also some
applications in nuclear technology such as in neutron de-
tectors and neutron shielding applications [4]. There are
some studies related with h-BN which commonly were
studied on neutron properties [5].
In this study, we investigated h-BN and h-BN-

-TiB2 composites on their gamma attenuation behaviors.
Gamma transmission technique was used in the experi-
ments. Cs-137 and Co-60 gamma radioisotopes were used
as radiation sources. The linear and mass attenuation co-
e�cients of the materials were carried out. The e�ects of
reinforcing TiB2 on h-BN materials were investigated.

2. Experimental
Gamma transmission technique is based on the geom-

etry where source, material and detector components are
put on the same axis [6]. The transmittance of gamma
radiation could be calculated from the formula [7]:

I = I0 e
−µx, (1)

where I and I0 represent transmitted and incident
gamma radiation intensity, respectively. µ is the linear
attenuation coe�cient of the sample at a speci�c gamma
ray and x is the thickness of the sample.
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Then the results of gamma radiation intensities which
were measured with/without sample were evaluated and
interpreted. General view of gamma transmission tech-
nique and information of experimental set up geometry
could be seen in Fig. 1.

Fig. 1. Schematic view of gamma transmission tech-
nique and studied geometry.

The source was set away to detector at 10 cm distance
for Cs-137 and 14 cm for Co-60 gamma radioisotopes and
a collimator which hole diameter is 0.7 cm and length is
5 cm was set in front of the source.
Cs-137 and Co-60 gamma radioisotopes were used in

the experiments as gamma sources where their half lives
are 30.1 and 5.23 years, respectively [6]. Cs-137 gamma
source has single energy peak at 0.662 MeV and the ac-
tivity of 8.9 µCi. Co-60 gamma source has two main
energy peaks at 1.17 and 1.33 MeV which has been as-
sumed the average energy peak as 1.25 MeV [8]. The ac-
tivity of studied Co-60 gamma radioisotope is 14.1 µCi.
PM1401K model scintillation detector and multichannel
analyzer was used in the experiments.
h-BN and h-BN-TiB2 samples were sintered at 1800 ◦C

under nitrogen atmosphere without pressure for 2 h.
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h-BN-TiB2 materials which include 55% TiB2 by weight
have 5× 5 cm2 area at di�erent thicknesses. h-BN sam-
ples have cylindrical shape at 5 cm diameter and 1 cm
thickness. The densities of h-BN and h-BN-TiB2 are 1.5
and 2.214 g/cm3, respectively.
In the experiments, �rstly background radiation was

measured to reduce it from the all other measurements
to indicate net intensities. Then I and I0 gamma inten-
sities for di�erent sample thicknesses were measured by
600 s accumulation time. Afterwards relative intensity

values (I/I0) were calculated for all sample thicknesses.
Finally relative intensity�thickness graphs were drawn
for all materials and their gamma attenuation properties
were evaluated.

3. Results and discussion

First, the results for Cs-137 gamma source were car-
ried out. Experimental results of h-BN and h-BN-TiB2

composites for Cs-137 and Co-60 gamma radiation were
given in Table I.

TABLE I
Experimental results for h-BN and h-BN-TiB2 against Cs-137 and Co-60 gamma source.

Material
(code)

Thickness
[cm]

1.
count

2.
count

3.
count

Av.
count

Std.
deviation

Relative
count

R. std.
deviation (±)

Cs-137

h-BN

0 3044 3046 3058 3049 8 1.0000 0.0050

0.6896 2826 2830 2822 2826 4 0.9268 0.0036

1.3792 2620 2622 2625 2622 3 0.8600 0.0030

2.0688 2432 2423 2429 2428 5 0.7962 0.0035

2.7584 2285 2286 2291 2287 3 0.7501 0.0029

h-BN-TiB2

0 3010 3013 3025 3016 8 1.0000 0.0053

0.2348 2916 2920 2920 2919 2 0.9677 0.0033

0.6761 2690 2688 2696 2691 4 0.8924 0.0037

1.8768 2256 2257 2258 2257 1 0.7483 0.0023

2.5529 2022 2020 2023 2022 2 0.6703 0.0023

2.7877 1943 1951 1956 1950 7 0.6466 0.0039

Co-60

h-BN

0 2995 3014 2992 3000 12 1.0000 0.0080

0.6896 2870 2861 2868 2866 5 0.9553 0.0054

1.3792 2705 2706 2717 2709 7 0.9030 0.0058

2.0688 2568 2554 2538 2553 15 0.8510 0.0084

2.7584 2437 2422 2447 2435 13 0.8117 0.0074

h-BN-TiB2

0 2995 3014 2992 3000 12 1.0000 0.0080

0.2348 2950 2936 2936 2941 8 0.9801 0.0066

0.6761 2777 2775 2765 2772 6 0.9240 0.0058

1.8768 2405 2406 2419 2410 8 0.8032 0.0058

2.5529 2205 2212 2224 2214 10 0.7378 0.0061

2.7877 2166 2175 2184 2175 9 0.7249 0.0059

TABLE III
Mass attenuation of h-BN and h-BN-TiB2 for Cs-137 and Co-60 gamma sources.

Material

Mass attenuation coe�cient [10−2 cm2/g]

Cs-137 Co-60

Experimental XCOM Di�erence [%] Experimental XCOM Di�erence [%]

h-BN 7.153 7.470 4.24 5.047 5.507 8.36

h-BN-TiB2 7.069 7.338 3.67 5.280 5.398 2.19

By using the values from Table I the relative intensity-
-material thickness graphs were drawn for h-BN and
h-BN-TiB2, in case of Cs-137 and Co-60 gamma radioiso-
topes have been used separately. The graphs were shown
in Fig. 2.

It could be seen from Fig. 2 that h-BN-TiB2 composite
has bigger gamma attenuation e�ect than h-BN for both
Cs-137 and Co-60 gamma radioisotope sources. The lin-
ear attenuation coe�cients of the samples were carried
out by using Origin program and given in Table II.



422 B. Buyuk et al.

Fig. 2. Cs-137 (a) and Co-60 (b) gamma attenuation
of h-BN and h-BN-TiB2.

TABLE II

Linear gamma attenuation of h-BN and h-BN-TiB2

for Cs-137 and Co-60 gamma sources.

Material
Linear attenuation coe�cient [cm−1]

Cs-137 Std. error Co-60 Std. error

h-BN 0.1073 0.0014 0.0757 0.0012

h-BN-TiB2 0.1565 0.0013 0.1169 0.0012

In addition, experimental mass attenuation coe�cients
(µ/ρ) of the samples were calculated and compared with
theoretical values which were taken from XCOM com-
puter code [9]. The results were given in Table III.
For all the samples, the experimental and theoretical

mass attenuation coe�cients are close to each other. The
di�erence percentages of the results for h-BN and h-BN-
-TiB2 are between 2.19 and 8.36%.
Finally the half value layers (HVL), which mean the

material thickness to reduce initial radiation intensity to
its half, of the samples were calculated by using the for-
mula [10]:

HVL =
0.693

µ
, (2)

where µ is the linear attenuation coe�cient of the sample
at speci�c gamma rays. HVLs of the materials for Cs-137
and Co-60 gamma radiation were listed in Table IV.

TABLE IV

HVLs of h-BN and h-BN-TiB2 against Cs-137 and Co-60
gamma radiation.

Material

Cs-137 Co-60

HVL
[cm]

Std.
deviation

HVL
[cm]

Std.
deviation

h-BN 6.460 0.084 9.157 0.145

h-BN-TiB2 4.429 0.037 5.929 0.061

As seen in Table IV, h-BN-TiB2 has smaller HVL than
pure h-BN for both Cs-137 and Co-60 gamma radiation.
Adding TiB2 to h-BN decreased HVL nearly 33% for
both Cs-137 and Co-60 gamma sources.

4. Conclusion

The linear and mass attenuation coe�cients of hexa-
gonal boron nitride and h-BN-TiB2 materials were car-
ried out against Cs-137 and Co-60 gamma radiation.
h-BN-TiB2 has the bigger linear attenuation coe�cients
than pure h-BN. In addition the HVLs of both pure h-BN
and h-BN-TiB2 against Cs-137 are 6.46 and 4.429 cm, re-
spectively. Furthermore against Co-60 HVLs of h-BN
and h-BN-TiB2 are 9.157 and 5.929, respectively. So
it means that the h-BN-TiB2 composites have approx-
imately 33% smaller HVL according to h-BN samples
for gamma radiation. Therefore adding TiB2 to h-BN
decreased the HVL of h-BN against Cs-137 and Co-60.
In conclusion, beside the good neutron shielding prop-
erties of h-BN and h-BN-TiB2 composites their gamma
attenuation properties also could be taken into account
if gamma shielding needs for the system.
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