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The properties and the e�ciency of a semiconductor thin �lm depend on the state of stress and defects in the
�lm structure. When the �lm is growing layer by layer, the elastic energy due to deformation stress between the
substrate and the �lm is released partly due to the formation of dislocations in the critical thickness deformation.
In this paper, we present a �nite element analysis of the stress state in a thin �lm of Cu3BiS3 as a function
of thickness and elastic energy release by nucleation of dislocations. Initially, we analyze the stress contours
associated with the epitaxial growth and dislocation nucleation and then combine these two in order to study
the e�ective potential energy state of the system. Finally, the tool wxAMPS is today an important application
for simulation of solar cells with high reliability and an improved design over its analysis of microelectronic and
photonic structures predecessor, incorporating physical principles concerning photovoltaic phenomena and uses a
new method for solving algorithms, combining Newton and Gummel approaches, which provides greater stability
and speed of computation.
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1. Introduction

The properties and e�ciency of heteroepitaxial semi-
conductor thin �lms depend upon states of stress and
defects in the �lm structure. Recent years, it has car-
ried out an extensive work as for characterization of thin
�lms, with special emphasis on the nucleation and the
generation of dislocations [1, 2].
During the epitaxial growth, the �rst layers are fully

consistent with the matrix with tetragonal distortion of
the �lm lattice. Whether, the �lm has a higher lattice
parameter, then the �lm is under compression while the
substrate under tension. Initially, for the �rst layers, the
elastic energy stored in the �lm is not suitable for nuclear
dislocation, but as the �lm thickness increases then be-
gins nucleation of dislocations and thus, the thickness in
which this occurs is designated as critical thickness (hc).
General, there are three approaches to determine the crit-
ical thickness at which nucleation starts dislocations:
I. Minimization of the total addition energies of defor-

mation due to �lm growth and dislocation energy [3].
II. Matching the strain energy with the dislocation en-

ergy [4].
III. Assumption that the �lm has excess stress and is

in a metastable state [5].

2. Dislocation energy

Elastically stored energy in a coherent isotropic �lm
parallel to crystallographic plane (0 0 1), (1 1 1) or (0 1 1)
is given by
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Eh = 2Gf2mh

(
1 + v

1− v

)
, (1)

where fm is the strain rate of the lattice, h is the �lm
thickness, G and v correspond to the shear modulus and
Poisson's ratio, respectively, of thin �lm material, Eh

is the strain energy per unit area of the sample. Edge
dislocation decreases the maximum strain rate, which is
proportional to the Burgers vector b, while a pure helical
dislocation does not contribute to this reduction. The
energy per unit length of an edge dislocation, such as that
obtained from the theory of elasticity, using a Volterra
cut is given by [6]:

Edl =
Gb2

4π(1− v)

[
2 + ln

(γ0
b

)]
, (2)

where γ0 represents the size of the control volume and is
taken such as 70b approximate and Edl is the energy per
unit length of the dislocation line. The total energy in
the thin �lm in presence of dislocations is

Etotal = Eh + Edl. (3)
It is noted that Eh has units of energy per unit area

and Edl is expressed in units of energy per unit length,
this implies that Edl should be normalized with a length
and may make corresponding operation with Eh.
Carrying out a division by using this length and γ0 = h

can be successfully established Etotal that is a function
of the thickness of the thin �lm. This is emphasized that
this length has been chosen by some authors as the Burg-
ers vector [7]. Since the core radius is often greater than
this length, it would be more appropriate to consider a
distance from the power supply which dislocation forma-
tion, this length is taken such as 5b [4]. This value is
approximately equal to the lateral expansion of the area
under tension [8].
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3. Finite element analysis
3.1. Coherent of thin �lm growth

It is expected that the linear relationship of Eh with
h is true for any thin �lm (Eq. (1)) [9]. As the growth
proceeds, the upper layers will be of more relaxed en-
ergy than the layers closest to the substrate [10], al-
though there is no evidence geometric relaxation. Con-
sequently, the energy per unit area of the sample should
increase with the thickness, but presents a signi�cant de-
crease [11].
3.2. Simulation of the nucleation of a strain dislocation

To carry out the simulation, we propose a rectangu-
lar domain of 200 Å × 150 Å, discretized with a mesh of
50×50 quadrangular �nite elements of standard type [12].
Figure 1 shows the location of the dislocations, where are
presented with two states at di�erent times for a con�g-
uration of sources 30 and 900 planes, showing the dis-
placement and annihilation of dislocations and the de-
formation of the mesh.

Fig. 1. Location of dislocations in step (a) 1000 and
(b) 5000. The deformation of the mesh with 30 planes
and 900 strains is displayed.

4. Results and discussion

4.1. Critical thickness

The equilibrium theory of Frank and Van der Merve
[3] takes into consideration only the energy in the sam-
ple. Using this magnitude in the �nite element simula-
tion [13], it is possible to determine the critical thickness
of the thin �lm proposed for analysis. To accomplish this
purpose it is convenient to e�ect a diagram that repre-
sents the energy per unit area at the interface both before
and after introduction of a dislocation in the system [14].
By reference to the graph shown in Fig. 2, at distances

of b/2 and 5b/2 energy per unit area is between about
0.56 and 0.02 J/m2, respectively. The thickness, in that
the stored energy in the �lm tensioned by unit area of
the interface, exceeds the threshold limits corresponding
to two critical values that can be termed as peaks and
correspond to the critical thickness [15]. For the case of a
thin �lm of Cu3BiS3, through the �nite element method
is a 6b critical thickness. Additionally, it is expected that
the level of metastability of the �lm depends on the con-
�guration of the same, either metallic or semiconductor,
which at the same time determines the extent of disloca-
tion nucleation and density dislocations existing.

Fig. 2. Variation of energy per unit area (�lm�
substrate interface).

4.2. Current�voltage characteristic

This feature could play a signi�cant part in the semi-
conductor solar cells [16], due to the low toxicity of bis-
muth compared with of CuInGaSe2 (CIGS), the ternary
Cu3BiS3 constitutes a favorable option for the devel-
opment of new materials applied photovoltaic devices.
Finally, the tool wxAMPS is today an important ap-
plication for simulating solar cells with high reliability
and improved design over its analysis of microelectronic
and photonic structures (AMPS) predecessor [17], which
incorporates physical principles concerning photovoltaic
phenomena and uses a new method algorithms for solv-
ing combining Newton and Gummel approaches, which
provides greater stability and computing speed.
However, in this work we used a computer PowerEdge

T320 with Intel R© Xeon R© processor, 8 GB RDIMM,
500 GB 7.2 k RPM HD, OS Red Hat Enterprise Linux
(RHEL 6.0), the Linux version of the wxAMPS free soft-
ware distributed from the University of Illinois and the
Linux version of the SCAPS software. On the other hand,
the numerical simulation was attended with known pho-
tovoltaic parameters in order to estimate unknown quan-
tities and associated diagrams.

Fig. 3. Bands diagram (a) and I�V characteristic (b)
of solar cells based on the Cu3BiS3 compound.

Figure 3 shows the diagrams obtained with wxAMPS
and SCAPS for the Cu3BiS3 absorber layer of solar cell.
In Fig. 3a it can be seen the energy band diagram showing
a bias voltage of 0.845 V under illumination, while the
diagram of Fig. 3b shows the current�voltage curves in
conditions dark/light.
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In wxAMPS initial conditions predicted for solar cell of
Cu3BiS3 compound that was used such as an absorbent
layer, obtained a Voc = 0.712 V, Jsc = 36.25 mA/cm2,
FF = 79.54%, and an e�ciency of 19.86%, which al-
lows us to infer Cu3BiS3 that constitutes an outstanding
alternative to the design of photovoltaic devices.

5. Conclusions

We used the �nite element method to simulate the nu-
cleation of dislocations of Cu3BiS3 thin �lm. Based on a
previously de�ned model, simulated a helical dislocation
and through the analysis of energy conditions there was
obtained critical thickness value for the sample semicon-
ductor 6b. Moreover, it is noted that large photovoltaic
conversion e�ciencies can occur, with a new material
with properties similar to CIGS.
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