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A model for an arti�cial hydrogen molecule consisting of two positive on-axis Coulombic centers and two
electrons coupled to them inside a double concentric quantum ring is considered. Such a nanostructure is assumed
to be under the in�uence of external probes like hydrostatic pressure and magnetic �eld. By using the adiabatic
approximation, the ground state energy is calculated as a function of the outer center line radius and the impurity
Coulombic center separation, for di�erent values of the hydrostatic pressure and magnetic �eld strength. In contrast
to the single properties imposed by nature on the actual hydrogen molecule, our model allows us to explore a great
variety of properties of the arti�cial hydrogen molecule by changing the ring dimensions. The arti�cial hydrogen
molecule energy structure may be tuned by changing the external �eld strengths.
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1. Introduction

A wide variety of semiconductor nanostructures with
di�erent morphologies, con�ning electrons and holes in
all three directions, have been grown in the last two
decades. Among them, the ring-shaped one has attracted
much attention because its singular � but nontrivial �
morphology o�ers us a unique system to analyze quan-
tum interference e�ects [1], and to develop novel opto-
-electronic devices [2, 3]. Besides, it is well known that
the presence of impurities in nanostructures modi�es sub-
stantially the electro-optic and kinetic properties. How-
ever, there are few theoretical researches on the energy
structure of hydrogenic impurities con�ned in quantum
rings (QRs) [4�8]. Although there have been several
reports on theoretical works on electrons and holes in
double concentric quantum rings (DCQRs) [9], only very
scarce studies on impurities in such systems have been
already put forward.
Stimulated by these facts, we analyze here an on-axis

two-hydrogenic molecule (D0
2) con�ned in DCQRs. We

also assume that this system is under external probes
like hydrostatic pressure and magnetic �eld. We address
in detail the incidence of these �elds on the D0

2 salient
features (equilibrium length and dissociation energy) as
well as the e�ect of the donor position and the QRs ge-
ometrical parameters on the D0

2 energy structure. This
contribution is organized as follows. In Sect. 2, we ob-
tain the basic formulae from theD0

2 Hamiltonian by using
adiabatic approximation. Section 3 presents the results
and discussion. Finally, the remarkable conclusions are
summarized in Sect. 4.

2. Theoretical framework

The D0
2 molecular complex considered here is formed

by two �xed and positive Coulombic centers at (0, 0, ξ1)

and (0, 0,−ξ2), that share electrostatic coupling with
two electrons with position vectors r1 and r2. These
electrons are spatially separated and forced to move in-
side two concentric QRs with identical rectangular cross-
-sections whose dimensions are W (QRs width) and L
(QRs height). A schematic plot of D0

2 in DCQRs is
shown in Fig. 1, where R1 and R2 are the inner and
outer center line radii, respectively. The study takes into
account the in�uence of the hydrostatic pressure by in-
troducing the corresponding dependences of the electron
e�ective mass and the dielectric constant on P (measured
in kbar): m∗(P )/m0 = 0.0665 + 5.7076× 10−4P , ε(P ) =
12.25−0.027P . The ring dimensions change according to
the expression L(P ) = L(0)[1− (S11 +2S12)]1/2, whereas
the radial size is ρj(P ) = ρj(0)[1−2(S11 +2S12)]1/2, and

ξj(P ) = ξj(0)[1− (S11 + 2S12)]1/2.

Fig. 1. Schematic 3D diagram of C0
2 molecular com-

plex in two concentric quantum rings under hydrostatic
pressure and magnetic �eld.

In the e�ective-mass approximation, the D0
2 Hamil-

tonian under the e�ects of hydrostatic pressure, and
z-direction magnetic �eld, B, can be written in cylin-
drical coordinates as follows:

(220)
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(
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+
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k=1

e2

ε(P ) |rj − ξk|
+ V (ρj , zj) ,

|r2(ρ2, ϕ2, z2)− r(ρ1, ϕ1, z1)|

=
√
ρ21 + ρ22 − 2ρ2ρ1 cos(ϕ2 − ϕ1) + (z22 − z21),

|rj(ρj , ϕj , zj)− ξk| =
√
ρ2j + (ξk − zj)2. (2.1)

The con�nement potential V (ρj , zj) is assumed to be zero
(in�nite) inside (outside) the QR region. The Coulomb
interaction terms appearing in Eq. (2.1) prevent from
obtaining exact eigenvalues. In consequence, an approx-
imated method must be used in order to solve the cor-
responding Schrödinger equation. For this, we can take
into account the structural properties of self-assembled
DCQRs [10]. In accordance, we notice that the height-
-to-center line radius aspect ratio is very small (L/Rj �
1, for j = 1, 2). Taking into account this fact and con-
sidering, for the sake of mathematical convenience, the
situation of very narrow QRs (W/Rc � 1), we may use a
numerical procedure based on the adiabatic approxima-
tion (AA) [4, 11]. Firstly, we carry out a rescaling of the
coordinates: ρj = ρ̃jW/2+Rj and zj = z̃jL/2, where the
new dimensionless variables ρ̃ and z̃ take values inside the
QR between −1 to 1. The use of the AA scheme, which is
computationally faster than the diagonalization and vari-
ational methods, allows us to decouple the slow electron
motion along the z-axis from the fast transverse electron
motion within the QRs cross-section. Accordingly, the
equation with a three-dimensional Hamiltonian reduces
to the following one-dimensional eigenvalue problem:

H =
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where
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Here, fj(ρ̃, ϕ)gj(z̃, ϕ) is the normalized ground state elec-
tron wave function in an in�nite two-dimensional square
quantum well whose lowest energy value is E0(ρ̃j , z̃j) =
[π2~2/2m∗(P )](1/L2 + 1/W 2). The dynamics of the
two electrons may be easily described by using center

of mass, Θ =
R2

1ϕ1+R2
2ϕ2

R2
1+R2

2
, and relative angular, ϕ =

ϕ2 − ϕ1, coordinates. In these coordinates, the Hamil-
tonian (2.2) can be rewritten as H = HΘ + HΦ , where
the center-of-mass and relative terms, respectively, sat-
isfy the equations: HΘΨM (Θ) = EΘ(M)ΨM (Θ) and
HΦΦm,s(ϕ) = EΦ(m, s)Φm,s(ϕ). The Schrödinger equa-
tion with Hamiltonian HΘ can be solved exactly, whilst
the other one has to solve numerically with periodic con-
ditions in the region [−2π, 2π] de�ned by the expres-
sion Φm,s(0) = (−1)mΦm,s(2π). The quantum numbers
M = 0,±1,±2, . . ., and m = 0,±1,±2, . . ., de�ne the
center-of-mass angular momentum and the two-electron
relative angular momentum, respectively. On the other
hand, s = + denotes even solutions or singlet states,
whilst s = − denotes the odd solutions or triplet states.

3. Results and discussion
In Fig. 2 we show the renormalized e�ective poten-

tial V̄ = V̄ (ϕ) as a function of the relative coordinate ϕ
for three values of the hydrostatic pressure: 0, 15 kbar,
and 30 kbar, without applied magnetic �eld. This po-
tential governs the rotational e�ects for a hypothetical
particle with reduced mass in the Schrödinger equation
corresponding to the relative term. We can see that the
greater is the hydrostatic pressure applied, the deeper is
the e�ective potential. This fact is a result of the re-
duction in the overall size of the system, the increase
of the electron e�ective mass, and the fall in the dielec-
tric constant. All this leads to the reinforcement of the
electron-impurity coupling.
The D0

2 ground state energy as a function of the outer
center line radius is shown in Fig. 3 for three di�erent
values of the hydrostatic pressure. We notice from this
�gure that the total energy tends to augment with the
increasing outer center line radius. This is due to the
reduction of the strength of both the attractive interac-
tion between the two-Coulombic centers and the second
electron into the outer QR and the electron�electron re-
pulsive interaction. Nevertheless, the above mentioned
behavior tends to change for very large outer center line
radius (R2 > 400 nm) because the slopes for all three
curves tend to be zero. In these cases, the second QR
is far enough from the �rst ring and the impurities. For
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Fig. 2. Renormalized e�ective potential of D0
2 in a

GaAs double concentric quantum ring as a function of
the relative angular coordinate ϕ.

this reason, the D0
2 energy tends asymptotically to the

D+
2 ground state energy. In consequence, by increasing

the outer center line radius we are able to analyze the
dissociation process: D0

2 → D+
2 + e−. We can also notice

that the e�ect of a nonzero applied pressure is to lower
the ground state energy.

Fig. 3. D0
2 ground state energy as a function of the

outer center line radius for three di�erent values of the
hydrostatic pressure: 0, 15, and 30 kbar. The inset
shows the curve behaviors for larger values of the outer
center line radius.

In Fig. 4, we display the results of D0
2 calculation

of ground state energy as a function of the separation
between the Coulombic centers, for di�erent values of
the hydrostatic pressure (P = 0, 15 kbar, and 30 kbar
� part (a)) and di�erent values of the magnetic �eld
(B = 0.2 T, and 3.4 T � part (b)). These curves present
an actual H2-like behavior, because the all have deep
minima for impurity separation distance equal to 20 nm.
Indeed, the salient features of the actual H2 complex are
predetermined by the nature, but the salient features of
D0

2 may be changed by modifying the external strength
�elds applied on the DCQR as well as the QR's geometri-
cal parameters. On the one hand, the increase of the hy-
drostatic pressure yields values of the dissociation energy
much greater in comparison with those of the DCQRs at
zero pressure. In this regard, the increase of the hy-
drostatic pressure allows us to obtain arti�cial molecules
much stable against the dissociation. The inset in the left
part shows that all curves tend to merge as long as the

impurity�impurity separation is large enough. On the
other hand, the increase of the magnetic �eld strength
shifts up energy minima, which tends to destroy the D0

2

molecular complex stability. This happens because the
dissociation energy exhibits a decrease when the mag-
netic �eld is turned on. This e�ect is due to the fact that
a nonzero magnetic �eld pushes the electrons toward the
internal QR's wall, forcing them to move faster around
the z-axis. Then, there is an increase of the electronic
kinetic energy which leads to destroying the molecular
identity due to the great competition between the attrac-
tive potential energy and the positive electronic kinetic
energy. Finally, these results illustrate a wide range of
possibilities to tune in real time the D0

2 dissociation en-
ergy or the stability of this molecular complex by chang-
ing the external probes.

Fig. 4. D0
2 total energy as a function of the impurity�

impurity separation for three di�erent values of the hy-
drostatic pressure: 0, 15 kbar, and 30 kbar (a) and for
three di�erent values of the magnetic �eld strength 0,
2 T, and 3.4 T (b).

The evolution of D0
2 total energy with the magnetic

�eld strength is shown in Fig. 5. The states are associ-
ated with di�erent values of the quantum numbers M ,
m, and s.

Fig. 5. D0
2 total energy as a function of magnetic �eld

strength for three values of the hydrostatic pressure: 0,
15 kbar, and 30 kbar.

We have: a → (0, 0, 0), b → (1, 1, 1), −b → (−1, 1, 1),
−d → (−2, 0, 0), −h → (−3, 1, 1), −m → (−4, 0, 0).
The noticeable evolution of these curves is the result of
the strong competition between the paramagnetic term
(term varies linearly with the magnetic �eld) and the
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diamagnetic one (term proportional to the square of the
magnetic �eld). For instance, when M ≥ 0 all curves are
linear at the beginning with positive slope. When the
quantum number M is negative, the slope of the curve
becomes negative for small values of the magnetic �eld
strength. But, then, the parabolic term in B dominates
the competition making the energy to begin a growth
with the magnetic �eld. The result is the appearance of
periodic oscillations of the ground state energy known as
the Aharonov�Bohm oscillations. From these �gures we
can see that the increase of the hydrostatic pressure yields
a little increase in the oscillation period. This happens
because the period is strongly dependent on the quan-
tum ring size and the hydrostatic pressure modi�es the
quantum rings dimensions.
Additionally, the hydrostatic pressure shifts down the

ground state energy level. For instance, a pressure
P = 15 kbar lowers the ground state in comparison
with the zero pressure case in ≈ 4%, whilst the pressure
P = 30 kbar lowers the ground state energy in ≈ 8%.
This fact seems to suggest that the D0

2 ground state en-
ergy decreases linearly with the pressure applied on the
DCQRs, which could not be surprising because a simi-
lar behavior was previously observed in quantum wells
[6, 12]. In order to give an answer to this suggestion, we
plot the ground state energy in Fig. 5 as a function of
the hydrostatic pressure.
The corresponding results are shown in Fig. 6. In this

graphics there is shown that D0
2 state energy displayed

in Fig. 5 decreases linearly with the hydrostatic pres-
sure applied on the DCQR according to the equation:
Emin−AB = −0.030P − 9.6136.

Fig. 6. D0
2 ground state energy displayed in Fig. 5 as

a function of the hydrostatic pressure.

4. Conclusions
The salient features of an arti�cial molecule con�ned in

a double concentric quantum rings have been studied by
using a simple model based on the adiabatic approxima-
tion. The equilibrium length and the dissociation energy
are strongly dependent on the external �elds applied as
well as on the double concentric quantum ring geometri-
cal parameters. The application of a magnetic �eld tends
to diminish the molecular stability while the hydrostatic
pressure tends to favor the molecular stability. Finally,

an arti�cial hydrogen molecule can be obtained by chang-
ing the geometrical parameters and its energy spectrum
may be tuned in real time by changing the external �eld
strengths. This fact allows us to modify the D0

2 essential
properties in an easy way, and obtain a wide variety of
arti�cial molecules whose properties are actually di�erent
from the real hydrogen molecule H2.
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