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Electric stimulation of various parts of the nervous system is a widely used therapeutic method and a principle
of operation of prosthetic devices. Its usefulness has been proven in areas such as treatment of neurological disorders
and cochlear prostheses. However the dynamic mechanisms underlying these applications are not well understood.
In order to shed some light on this problem we study the response of the Hodgkin�Huxley neuron subject to
periodic train of biphasic rectangular current pulses. One of the simpler ways to understand the behavior of such a
nonlinear system is the analysis of the global bifurcation diagram in the period�amplitude plane. For short pulses
the topology of this diagram is approximately invariant with respect to the pulse polarity and shape details. The
lowest excitation threshold for charge-balanced input was obtained for cathodic-�rst pulses with an inter-phase
gap approximately equal to 5 ms. The �ring rate of the Hodgkin�Huxley neuron stimulated at the frequency of its
natural resonance is a square root function of the pulse amplitude. At nonresonant frequencies the quiescent state
and the �ring state coexist and transition to �ring is a discontinuous one. We found a multimodal transition in the
regime of irregular �ring between the 2:1 and 3:1 locked-in states. This transition separates the regime of odd-only
multiples of the stimulus period from the regime where modes of both parities participate in the response. A strong
antiresonant e�ect was found between the states 3:1 and 4:1, where the modes (2 + 3n) : 1, where n = 0, 1, 2, . . .,
were entirely absent. The antiresonant e�ects at high stimulation frequency, such as multimodal transition, may
provide an explanation for the therapeutic mechanism of deep brain stimulation.
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1. Introduction

Stimulation of neural �bers with a train of electric cur-
rent pulses has become standard procedure in several ar-
eas of clinical practice. This encompasses, but is not lim-
ited to, cochlear and retinal prostheses [1�3], deep brain
stimulation (DBS) [4, 5], as well as high-frequency con-
duction block of peripheral nerves [6]. Typically such de-
vices should minimize charge and energy per pulse. The
minimum current amplitude required for the neuron to
spike and its dependence on stimulation frequency and
pulse shape are among the basic properties measured in
experiment. The injected charge should be kept at safe
levels, mainly to avoid changes in the chemical content of
tissue near the electrode which could damage tissue [7, 8]
or cause the electrode corrosion [9]. Usually the injected
charge needed by the neuron to spike is minimized by the
shortest possible width whereas optimization of the pulse
energy occurs at certain larger width [10�14]. Selection
of the most e�cient waveform shape and duration, such
that delivered charge, energy and power are simultane-
ously optimized is a di�cult task [15, 16]. Most studies
indicate that non-rectangular pulses are more energy ef-
�cient than rectangular ones [11, 13, 14, 16].

The general stimulation wave form in DBS applica-
tions consists of a brief cathodic pulse, followed by a de-
lay, and then a charge-balancing anodic pulse [17]. The
change of the wave form a�ects stimulation thresholds of
local cells and �bers of passage di�erently, thus aiding
in selecting the stimulation target. Both symmetric and
asymmetric biphasic charge-balanced wave forms in se-

lective stimulation of the CNS were investigated [5, 18].
Also most cochlear implants use charge-balanced bipha-
sic (BP) stimulation. Studies of auditory nerve �bers
(ANF) found that threshold can be reduced [19, 20] by
introducing a delay between standard BP pulses com-
monly used in cochlear implants.

Some of the DBS research is focused on the dynamics of
the cortico-basal-ganglia-thalamo-cortical network. It is
thought that optimal response to DBS occurs at resonant
frequencies of the network [21�23]. However, DBS is less
e�ective at lower frequencies and the therapeutic e�ect is
most bene�cial above 100 Hz, well above the frequency
range normally considered for basal ganglia processing.
Since there is some evidence of 300 Hz subthalamic os-
cillations [24] it has been suggested that multiple natural
periods may be involved in parkinsonism due to multiple
network loops.

However, there is another possible mechanism for dis-
ruption of network activity patterns. Recent studies of
resonant neurons revealed the presence of multimodal
transition (MMT), occurring at approximately 2.5fres,
where fres is the natural resonance frequency, where the
parity of response modes is changed [25�28]. This ef-
fect has an antiresonant character. It involves both a
chaotic behavior and a signi�cant slowing down of aver-
age response frequencies in the vicinity of MMT. It would
therefore be useful to investigate if this phenomenon is
sensitive to details of the stimulus wave form and whether
it exists also for charge-balanced inputs.

Studies of electrically stimulated ANFs show that at
low stimulation rates these �bers �re regularly, in-step
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to applied stimulus, whereas at high stimulation rates
the response is highly irregular. Irregular �ring and
desynchronization among a group of ANFs is usually
attributed to irregular synaptic input and physiological
noise [29, 30]. It must be kept in mind however that neu-
rons themselves are strongly nonlinear systems and are
capable of irregular �ring even in the absence of noise
[25, 26]. O'Gorman et al. showed recently [31, 32] that
a dynamic instability is a plausible explanation of �ring
irregularities in stimulated ANF. Using the FitzHugh�
Nagumo (FHN) model [33], they obtained a positive Lya-
punov exponent which is consistent with experiments,
where mutual desynchronization between similarly stim-
ulated �bers was observed. Their study is consistent with
our analysis of the MMT within the HH [25�27] and
Morris�Lecar [28] models. Since multimodal dynamics
is common in electrically stimulated ANFs [34�40], the
current article may help to understand the response of
ANFs to stimulation by a train of high-frequency current
pulses.
The aim of this work is not the search for the most op-

timal charge and energy-e�cient pulse shape. The focus
is on (i) proving the invariance of the global bifurcation
diagram of a resonant neuron with respect to pulse shape,
polarity, and inter-phase gap (IPG), (ii) �nding the op-
timal IPG for a rectangular biphasic wave form, and (iii)
proving that the dynamic instability in the form of the
recently discovered multimodal transition exists also for
biphasic pulses, which makes this phenomenon interest-
ing in the context of clinical applications.

2. Methods

We analyzed the response of the HH neuron to peri-
odic biphasic charge balanced pulses. The requirement
of charge neutrality was imposed to avoid tissue damage.
Such stimuli were investigated experimentally [20, 41, 42]
and theoretically by several groups [19, 20, 43, 44].
We considered the model with the classic parameter

set and rate constants [45],

C
dV

dt
= −INa − IK − IL + Iapp, (1)

where INa, IK, IL, Iapp, are the sodium, potassium, leak,
and external current, respectively. C = 1 µF/cm2 is the
membrane capacitance. The input current was a periodic
set of rectangular steps of height I0 and width τ . The cal-
culations were carried out with the time step of 0.001 ms
and were run for 40 s, discarding the initial 4 s. The dif-
ferential equations were integrated using the fourth-order
Runge�Kutta scheme implemented by the author. None
of the publicly available programs were used.
Figure 1 shows the form of biphasic pulses used in the

calculation. The emphasis of this work is on the charge-
-balanced stimulus shown in Fig. 1a. We investigated
how the amplitude, period Ti, width τ , and delay τ1 be-
tween the onsets of the two phases, in�uence the neu-
ron's response. Stimuli of this form are used in cochlear
[19, 20, 43, 44] and visual [1, 3] neural prostheses, as well

Fig. 1. Stimulus wave form used in the calculations:
(a) charge-balanced biphasic form with delay, and (b)
monophasic pulses with delay. The delay between the
onset of the cathodic and anodic phase is τ1 and τ is
the width of each phase.

as deep brain stimulation [13] and muscle stimulation [9].
Electrical stimulation protocols have been used to learn
about cortical function [46] and vestibulo-ocular re�ex
eye movements in chinchillas [47]. High-frequency bipha-
sic current pulses may also be useful in reversible periph-
eral nerve block that would be desirable in some clinical
applications [6]. We also considered monopolar biphasic
pulses, shown in Fig. 1b, and calculated threshold depen-
dence on IPG at di�erent stimulation frequencies.

3. Results

Figure 2 shows the global bifurcation diagram in the
period�amplitude plane for a charge-balanced biphasic
current with no delay between the cathodic and anodic
part, i.e. τ = τ1 = 0.6 ms. The numbers in the �gure
show the location of various states locked-in to the stim-
ulus. For example 2 denotes the state 2:1, where there
is one action potential for each two stimulus pulses. The
notation p:q means q output spikes for every p current
pulses. The type of the near-threshold response depends
strongly on stimulation frequency. The �ring rate f0/fi
is a continuous function of the current amplitude near
the resonance [27], Ti ∼ Tres ≈ 17 ms, where Tres is the
neuron's preferred interspike interval (ISI).
Resonant stimulation periods are sometimes de�ned as

the location of the membrane voltage maxima [48, 49].
However this de�nition makes Tres depend on pulse mag-
nitude I0. In the context of this article we prefer to use a
related but slightly di�erent description. The resonances
can be identi�ed by the minima of the excitation thresh-
old. Both de�nitions are equivalent at the threshold. In
Fig. 2 they are located at Ti ≈ 17 ms and 34 ms. The lo-
cal threshold maxima are associated with antiresonances.
In Fig. 2 they occur at Ti ≈ 25 ms and just below 6 ms.
It is clear from Fig. 2 and from earlier analysis [27, 28]
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Fig. 2. Top part: response diagram for a biphasic stim-
ulus with no delay between the anodic and the ca-
thodic part of a pulse, τ = τ1 = 0.6 ms. The high
frequency limit of the same diagram is shown in more
detail in the bottom part. The numbers 1, 2, . . . indi-
cate the zones of 1:1, 2:1, and higher locked-in states;
symbols i and b are used to denote regions of irregular
and bistable behavior, respectively. Borders of bistable
regions are marked with a dotted line. In the zones be-
tween the solid and dotted lines the �ring state coexists
with the silent one. The resonance near Ti = 17 ms
and I0 = 30 µA/cm2, where the minimum of the exci-
tation threshold occurs, is dominated by the 3:1 state
and higher order states. Its mode-locking structure is
essentially identical to that of monophasic monopolar
stimulation shown in Fig. 3 of Ref. [27]. The �ring
rate f0/fi, where f0 and fi are the average response
and stimulation frequency, continuously decreases to 0
at the tip of the resonance, f0/fi ∼ (I0 − Ith)1/2. The
second resonance near Ti = 34 ms is occupied by states
of order higher than 1:1 (see also Ref. [27]). Also at this
resonance the �ring rate depends continuously on I0.
Bottom part: the regime of high stimulation frequency
in more detail. There is a strong antiresonance near
Ti = 5.5 ms.

that antiresonances are accompanied by bistable behav-
ior. Most of the regime of high stimulation frequency has
antiresonant character.

In bistable regions the neuron can be in one of two
states. One is a �ring state, such as 1:1, 2:1, 3:1, etc.
and the other is the quiescent state. Boundaries of these
areas were found using a continuation algorithm, in which
end values from previous iteration were used as initial
conditions for a new parameter set.

Periodically stimulated neural oscillators are known to
phase-lock with the stimulus. Examples of such lock-
ing are shown in Fig. 3. The 1:1 locking is displayed
in Fig. 3a, where there is an action potential for every

Fig. 3. Examples of solutions in bistable zones for
stimulus with no inter-phase gap, τ = τ1 = 0.6 ms, and
amplitude I0 = 30 µA/cm2, and stimulus period (A)
Ti = 24 ms, (D) Ti = 12 ms. (B) Firing solution locked
1:1 in response to stimulus shown in (A). (C) Non-�ring
solution in response to stimulus (A). (E) Firing solu-
tion locked 2:1 in response to stimulus shown in (D).
(F) Non-�ring solution in response to stimulus (D).

stimulus pulse. Mode-locking of order n:1, where n is an
integer greater than 1, can be obtained for higher stimula-
tion frequencies or just above threshold for Ti ≈ Tres [27].
Figure 3 shows an example of 2:1 locking for Ti = 12 ms.
Both regular and irregular patterns, corresponding to
noninteger ratios of the average output period T0 to the
input period Ti, also exist.

The overall topology of this diagram closely resem-
bles the result for monophasic monopolar pulses [27]. In
the high frequency limit the threshold is a nonmonotonic
function of Ti with a local maximum near Ti = 5.5 ms,
which is approximately 1/3 of the resonance period Tres.
In other words, the HH neuron is least likely to respond
when driven with the frequency 3fres. Below Ti = 8 ms
the entire perithreshold region is bistable. Here the qui-
escent state coexists with either a locked-in or a chaoti-
cally �ring state. Which of these solutions is obtained de-
pends sensitively on initial conditions. It is worth noting
that nonmonotonic behavior of the hearing threshold was
observed in experiments in cochlear implant users [50].
However more detailed experimental studies of threshold
dependence on stimulation frequency are needed before
comparisons could be made. Special attention must be
paid to the possibility of bistable behavior at the thresh-
old.

The �ring frequency depends nonmonotonically on Ti.
Figure 4 shows f0 vs. Ti for I0 slightly above threshold.
The largest deviation from the resonant frequency occurs
between the 2:1 and 3:1 states, near Ti = 7.5 ms. This
is a signature of a dynamic instability associated with
the competition of even and odd modes [25]. Sample
V (t) runs very close to this instability and is shown in
Fig. 5. The odd multiples of the stimulus period clearly
dominate. Out of 18 ISIs visible in Fig. 5 there are only
two even multiples of Ti in Fig. 5.

In an earlier article we showed that the HH neuron
responding to a periodic sequence of monophasic pulses
undergoes a multimodal odd-all [25] and even-all tran-
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Fig. 4. The �ring frequency in the limit of high stimu-
lation frequency for a biphasic pulse at I0 = 47 µA/cm2,
with no inter-phase delay, τ = τ1 = 0.6 ms. The re-
sponse between the mode-locked intervals is nonmono-
tonic and highly irregular.

Fig. 5. Sample V (t) runs for Ti = 8.35 ms, very close
to the multimodal transition. Here τ = τ1 = 0.6 ms,
and the stimulus amplitude is I0 = 35 µA/cm2. The
shown ISI sequence is 3, 5, 41, 13, 3, 7, 15, 19, 9, 15,
59, 7, 46, 3, 14, 3, 11, 11, in units of Ti. The ISIs are
mostly odd multiples of Ti.

Fig. 6. The �ring rate (top) and the histogram weight
of odd and even modes (bottom) in the vicinity of the
odd-all multimodal transition, Ti ≈ Tmm, for stimula-
tion with a sequence of biphasic pulses of amplitude
I0 = 35 µA/cm2. Even modes appear only above the
minimum of f0/fi. An interspike interval is classi�ed as
belonging to the n-th mode if it falls between (n−1/2)Ti

and (n+ 1/2)Ti.

sition [27] in some regions of parameter space. Fig-
ure 6 shows the minimum of the �ring rate occurring
between the 2:1 and 3:1 locked states for pulse amplitude
I0 = 35 µA/cm2. The weight of even modes is nonzero
only for Ti above the minimum of f0/fi.
For Ti below Tmm only odd modes exist. The role of

the mode parity is easier to understand if we remember
that 2Ti, where Ti ≈ 8.5 ms is approximately equal to
the resonant period Tres. The competition of odd and
even modes in Fig. 6 accompanies the transition between
the resonant and antiresonant regime. The vanishing of
even modes below Ti ≈ 8.4 ms and a signi�cant decrease
of the �ring rate are a clear signature of entering the
antiresonant regime.
The dependence of the �ring rate on pulse amplitude I0

in the vicinity of the threshold is qualitatively di�erent
on both sides of the multimodal transition, see Fig. 7.
For Ti < Tmm the �ring rate depends discontinuously on
pulse amplitude. However the size of the discontinuity
decreases as Ti approaches Tmm. For Ti ≥ Tmm, f0 is a
continuous, nearly linear function of I0. In this regime
the average �ring rate may be arbitrarily small.

Fig. 7. The �ring rate as a function of the stimulus
amplitude I0 at �xed Ti near the multimodal transition.
The transition occurs at Tmm ≈ 8.4 ms. Here τ = τ1 =
0.6 ms.
At high frequencies, for Ti < 5.5 ms, the bistable zones

encompass not only phase-locked states with integer ra-
tios of T0/Ti, but also states with no regular response
pattern. Dependence of the �ring rate on the current
pulse amplitude in one of such zones is shown in Fig. 8.
Here the irregularly �ring state coexists with a quiescent
state. The �ring rate depends discontinuously on stimu-
lus amplitude in this regime.
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Fig. 8. The �ring rate as a function of the stimulus
amplitude for Ti = 5.5 ms and no delay between the
phases of the pulse, τ = τ1 = 0.6 ms. The vertical
broken line separates bistable and monostable regions.

Another interesting e�ect occurs between the 3:1 and
4:1 states at high frequencies. Bands of T0 vs. Ti values
are shown in Fig. 9. Note the absence of all modes of the
form (5 + 3n) : 1, where n is a nonnegative integer. This
is a consequence of the fact that the product (5 + 3n)Ti
falls in an antiresonant regime for Ti ≈ 5.5 ms. A typical
V (t) dependence in this situation is shown in Fig. 10.
This is a qualitative e�ect, independent of a particular
pulse shape.

Fig. 9. Top: the ratio of the output period T0 to the in-
put period Ti between the 3:1 and 4:1 entrained states
for a biphasic pulse at I0 = 45.8 µA/cm2. Bottom:
histogram of response modes at Ti = 5.55 ms and
I0 = 45.8 µA/cm2. The calculations were carried out
for stimulus with no inter-phase gap, τ = τ1 = 0.6 ms.
The histogram bin size is 0.01 ms. Note the absence of
modes 5, 8, 11, 14, and 17.

Fig. 10. Sample V (t) dependence for Ti = 5.55 ms.
Here τ = τ1 = 0.6 ms, and the stimulus amplitude I0 =
45.8 µA/cm2 is slightly above threshold. The modes
3:1 and 4:1 dominate, with no clear separation between
them. The modes (5 + 3n) : 1, where n = 0, 1, 2, . . ., do
not appear in the neuron's response.

Figure 11 shows the excitation threshold as a func-
tion of the delay between the anodic and the cathodic
phases of the pulse, for four choices of the stimulus pe-
riod. In each case the optimum τ1 is about 5 ms. If
the input period is in the antiresonant regime, i.e. for
Ti = 11 and 23 ms, there are two thresholds because of
bistability, both of which have minima at similar values
of τ1. The upper threshold where the transition to �r-
ing occurs through a subcritical Hopf bifurcation, has a
maximum at approximately τ1 = 13 ms. This antires-
onant feature occurs at the same τ1 also in stimulation
by pulses separated by Ti = 34 ms. Lower thresholds
for biphasic cathodic-�rst stimuli were also observed in
Refs. [51�53] and calculated by Smit et al. [44] in an ANF
model containing persistent sodium and slow potassium
currents.

The minimum threshold is obtained for the stimulus
frequency tuned to the natural resonance of the neuron.
The resonance period sets also an upper limit of IPG, for
which the interaction between the cathodic and anodic
phase is noticeable, see bottom part of Fig. 11. The spike-
-triggered average of stimulus I(t) for isolated spikes in
the HH model driven by Gaussian random noise current
with a short correlation time also indicated the preference
of the neuron for approximately 5 ms separation between
the negative and positive parts of the current [54]. This
is a re�ection of the HH neuron internal dynamics in
which the sodium channel remains open for about 5 ms
from the stimulus onset. The bifurcation diagram with
an optimal IPG, τ1 ≈ 5 ms, shown in Fig. 12 closely
resembles Fig. 2. The only signi�cant di�erence is the
shift of the boundary between the quiescent state and
�ring states to lower values of I0.

The precise location of the tip of main resonance Tres
depends on the size of IPG. For �xed τ the resonance
period grows with increasing τ1, see Fig. 13. This slowing
down is due to the cathodic pulse which delays the �ring
cycle. At the optimal IPG, τ1 = 5 ms, the tip of the
resonance is shifted by approximately 1 ms relative to its
position for monophasic excitatory pulses.

The �ring rate at the main resonance frequency, shown
in Fig. 14, is a square root function of the pulse ampli-
tude f0 ∼ (I0 − Ith)

1/2, where Ith is an approximate
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Fig. 11. Excitation edge for di�erent interpulse sepa-
ration as a function of time di�erence between the ca-
thodic and anodic phase. From top to bottom: Ti =
11, 17, 23, and 34 ms, for stimulation by rectangular cur-
rent pulses of width τ = 0.6ms and height I0. For di�er-
ent pulse frequencies the minimum occurs at τ1 ≈ 5 ms.
The threshold is bistable for Ti = 11 ms and 23 ms,
where both the �ring solution and the quiescent state
exist between the broken line and the solid line.

threshold. This implicates that the transition to �ring
occurs via a saddle node bifurcation. This is a property
of the neuron's internal dynamics and is independent of a
stimulus shape. However, it is important to realize that
the character of the bifurcation at the resonance changes
as the width of the pulse increases beyond optimal [27].
For pulse widths approaching the time scale of the res-
onance, the �ring rate becomes a discontinuous function
of I0. The transition to �ring occurs then via a subcriti-
cal Hopf bifurcation and there is a bistable zone near the
threshold at all frequencies.

An illustration of slow �ring rates near the resonance
is shown in Fig. 15. It is quite surprising that this as-
pect of the HH neuron dynamics was not known until re-
cently [27]. We can expect similar slowing down in many
other models of resonant neurons as well, although the
exact details of this behavior will depend on the relative
magnitude of time scales of each model.

The threshold for biphasic monopolar pulses is shown
in Fig. 16. For Ti ≤ Tres the most regular input signal
with equally spaced pulses, τ1 = Ti/2, is also the least

Fig. 12. Response diagram for stimulus with an opti-
mal inter-phase gap, τ1 = 5 ms, τ = 0.6 ms. Symbols i
and b indicate a zone of irregular �ring and bistability,
respectively. Boundaries of bistable zones are marked
with a dotted line. The resonance area near Ti = 17 ms
is dominated by the 3:1 state and higher order states.
In this zone the �ring rate is below 0.5 and decreases
almost continously to 0 at the tip of the resonance. The
second resonance near Ti = 34 ms is occupied by modes
higher than 1:1. In this regime the �ring rate is below 1.

Fig. 13. Dependence of the location of the resonance
tip on the inter-phase gap τ1. The phase width is �xed
at τ = 0.6 ms.

Fig. 14. Firing rate as a function of the stimulus am-
plitude in the resonant regime, Ti = 18.3 ms. Here
τ = 0.6 ms, τ1 = 5 ms. Note the continuous depen-
dence of the �ring rate on I0, f0 ∼ (I0 − Ith)1/2, near
the threshold.
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Fig. 15. Sample V (t) dependence near the resonance
at Ti = 18.2 ms, for stimulation by biphasic pulses
with τ = 0.6 ms, τ1 = 5 ms. The current amplitude
in the top and bottom part is I0 = 7.33 µA/cm2, and
7.303 µA/cm2, respectively.

Fig. 16. Excitation edge for a double pulse as a func-
tion of separation between the leading and the trailing
phase. The inter-phase gap is scaled in units of the stim-
ulation period Ti. The diagrams from top to bottom are
drawn for Ti = 11, 17, 23, and 34 ms, respectively.

likely to elicit spiking. The notation here is the same
as in Fig. 1. Any deviation from the perfect regularity
of the stimulus for τ1 = Ti/2 and Ti ≤ Tres, either by
means of a deterministic or stochastic perturbation leads
to a decrease of threshold.

Comparing Fig. 12 to Fig. 2, we can conclude that the
topology of the response diagram does not depend on
the size of IPG for τ1 < 5 ms. The same is likely to be
true for all types of periodic short pulses irrespective of
details of their time dependence. This is an illustration
of the well known fact that the HH neuron has a charge
threshold property. When a relatively strong current is
delivered in a short time, the voltage change is mainly
determined by the capacitive current [55�57].

In neural electrical stimulation the main safety factors
are the amount of charge transferred in a single pulse,
Qth, and energy per spike, Eth, needed to evoke spiking,

Fig. 17. Threshold charge (left part) and threshold en-
ergy (right part) as a function of τ for a resonant stim-
ulation, Ti = 17 ms, by a biphasic periodic sequence of
pulses with an optimal inter-phase gap, τ1 = 5 ms. The
minimum charge occurs at τ → 0 which means that the
most e�ective pulses are those with the shortest possible
width. The pulse energy has a minimum near τ = 4 ms.

Qth ∼
∫ τ

0

Ith(t)dt, (2)

Eth ∼
∫ τ

0

I2th(t)dt, (3)

where Ith is the threshold current amplitude. Figure 17
shows the threshold charge at Ti = 17 ms as a func-
tion of the phase width τ for τ1 = 5 ms. The charge-
-duration curve in Fig. 17 implies the use of short pulses
in stimulation protocols if the injected charge is to be
minimized. In practice, pulses lasting tens of microsec-
onds approach the minimum charge condition su�ciently
well and are often a reasonable solution in the design of
neural prostheses. During this relatively short time one
may be able to avoid Faradaic reactions that would occur
at higher levels of total charge with longer pulses. Similar
conclusion was reached in a study of Sahin and Tie [11]
who investigated e�ects of non-rectangular wave forms on
threshold both experimentally and theoretically within a
simple local model of a mammalian nerve [58, 59]. Their
model is similar to the HH model except for the absence
of the potassium channel. However if the main limiting
factor is the energy delivered per pulse, then �nite τ is
preferable, see Fig. 17. Qualitatively similar result was
obtained for di�erent wave forms in Ref. [11].

4. Discussion

The global bifurcation diagram of the HH neuron stim-
ulated by biphasic charge-balanced pulses is very similar
to the diagram obtained in the study of monophasic stim-
ulation [27]. Charge-balancing has no e�ect on topology
of the global bifurcation diagram in the period�amplitude
plane. Figure 2 closely resembles results obtained for the
monophasic stimulation [27]. These properties are quite
general, provided the width of the current pulses is su�-
ciently small, which implies τ1 < 5 ms for the classic HH
parameter set, and should hold for other, non-rectangular
pulse shapes.
Studies of threshold behavior of resonant neurons may

help to design future cochlear implants. The excitation
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threshold is a very sensitive function of IPG. When the
anodic part of the pulse follows immediately the cathodic
part the magnitude of threshold current pulses at the
main resonant frequency is almost I0 ≈ 30 µA/cm2 (see
Figs. 11 and 2) for the phase width of τ = 0.6 ms. When
the IPG is increased, the threshold decreases, reaching
I0 ≈ 7.3 µA/cm2 (see Fig. 12) for the near-optimal inter-
-phase separation of τ1 = 5 ms. In the monophasic stim-
ulation by current pulses of the same phase width the
threshold at Tres is approximately I0 ≈ 10 µA/cm2 [27].
It is interesting to note that in the monophasic case the
perfectly periodic stimulus has a higher threshold than a
signal with unequal intervals between subsequent pulses,
see Fig. 16. Results in Figs. 11 indicate that IPG giv-
ing the lowest �ring threshold of the HH membrane is
approximately 4�5 ms. The IPG required to minimize
threshold is approximately the same as the IPG which
minimizes the energy delivered per pulse. The decrease
of threshold associated with the increase of IPG is con-
sistent with experimental measurements [19]. Similar re-
sult was obtained for biphasic pulses with long IPG in
a phenomenological model of electrically stimulated hu-
man ANF [43]. Our results are also consistent with the
work of Carlyon et al. [20] who studied human behavioral
thresholds for trains of biphasic pulses applied to a single
channel of cochlear implants as a function of IPG. The
experimental threshold decreased for IPGs up to several
milliseconds when the phases of the pulse were of oppo-
site polarity.
The �ring threshold of the HH model is a nonmono-

tonic function of the stimulation period with the mini-
mum at the main resonance. A local minimum exists also
at very high stimulation rate. At the resonant stimula-
tion period and its multiples the solution is always unique
and the �ring rate is a continuous square-root function of
the pulse amplitude I0, f0/fi ≈ 2(I0/Ith − 1)1/2, where
Ith is the threshold. Thus f0 can be arbitrarily low. The
simplest way to obtain desired interspike separation T0
in a resonant neuron of the HH type is to stimulate it
with current pulses of amplitude

I0 ≈ Ith

(
1 +

T 2
res

2T 2
0

)
. (4)

Naturally, it should be kept in mind that a resonant neu-
ron need not have the dynamics of the HH model [28] and
the square root dependence of the �ring rate on current
amplitude is not always available.
The optimal stimulation in clinical applications may

include Gaussian noise superposed on the input sig-
nal [60]. Small amounts of noise have been shown to
improve detection of faint signals, improve temporal res-
olution, and regularize strongly irregular �ring in regimes
of dynamic instabilities. Noise eliminates bistability at
nonresonant frequencies [27]. However noise also broad-
ens the local minima of excitation threshold which is not
desirable in tasks such as selective stimulation of nerve
�bers.
The recently discovered odd-all multimodal transition

[25, 26], related to the vanishing of even response modes

and accompanied by a deep local minimum of the �ring
rate, occurs also for charge-balanced stimuli. It is located
between the 2:1 and 3:1 locked-in states and is most pro-
nounced near excitation threshold. This phenomenon is
a manifestation of the internal neuron dynamics. It is
not related to a functional form of the stimulus. The
change of the current pulse wave form shifts the excita-
tion threshold, but does not a�ect the topology of the
global bifurcation diagram. Also the frequency of the
multimodal transition is invariant to the changes of the
pulse shape.

O'Gorman et al. proposed that �ring irregularity of
ANF at high stimulation rates is due to a dynamic insta-
bility [31, 32]. It is characterized by positive values of the
Lyapunov exponent and explains both the sensitivity to
small changes of the stimulus and the lack of synchroniza-
tion of response of di�erent ANFs to external drive [31].
Although O'Gorman et al. analyzed the instability from a
di�erent viewpoint, its dynamical mechanism in the FHN
model is the same as in the HH model. The MMT [25, 26]
and a dynamic instability [31, 32] associated with it are
key properties of many resonant neurons. MMT implies
threshold bistability at nonresonant stimulation frequen-
cies above the natural frequency of the neuron [28]. The
converse is not always true. Bistability at the threshold
does not always imply the existence of MMT. As our re-
cent study showed, neuron dynamics may be divided into
four classes [28]. Only one of them displays MMT. Thus
it is important to correlate the threshold studies with the
search for the signatures of MMT in the ISI histograms.

This phenomenon may be relevant also in explaining
the desynchronizing e�ect of high frequency stimulation
on networks of oscillating neurons. Llinas et al. [61]
claimed that many neurological disorders are caused by
pathological resonant interaction between cortical and
sub-cortical structures. Subsequent studies of network
dynamics in the Parkinson disease found enhanced neu-
ral synchrony in the beta band (13�30 Hz) [62]. In fact,
McIntyre and Hahn [63] point out that the strongest ther-
apeutic e�ect in DBS treatment is obtained at frequen-
cies of order 100 Hz and higher. They also propose that
the optimal DBS frequencies are resonant frequencies of
the cortico-basal-ganglia-thalamo-cortical loop or loops
within this network. In our work the dominant high-
-frequency e�ects are of anti-resonant character. When
some neurons in the loop are forced to �re chaotically by
high-frequency stimulation, they are prevented from par-
ticipating in a coordinated activity of a neural ensemble
at their natural frequencies. Thus high-frequency anti-
-resonant e�ects, such as the multimodal transition, may
help to explain the therapeutic mechanism of DBS.

The model considered here assumes intracellular cur-
rent injection. Since clinical neurostimulation devices
deliver current in the extracellular space, let us brie�y
comment how the presence of tissue a�ects the problem.
Most bioelectric �eld models assume a purely resistive
tissue and ignore capacitive, inductive and wave propa-
gation e�ects. This approximation may not always be



Response of the Hodgkin�Huxley Neuron . . . 153

appropriate for stimulation by high-frequency pulses. In
a realistic calculation both electrode and bulk tissue ca-
pacitance should be included [64]. Bossetti et al. [65]
studied the problem and concluded that wave propaga-
tion and inductive e�ects can usually be neglected. How-
ever the quasi-static approximation is valid only for a
speci�c range of tissue dielectric properties. The analy-
sis of Tracey and Williams [66] showed that attenuation
due to frequency-independent capacitance increases �ring
thresholds and the dispersion caused by the frequency-
-dependent e�ects may have an opposite in�uence, lead-
ing to lower threshold currents. Foutz and McIntyre
pointed out that optimal pulse width depends on elec-
trode geometry [13]. In the case of extracellular stimu-
lation we expect the global bifurcation diagram, Figs. 2
and 12, to have the same overall form, although details
such as precise location of the threshold would be af-
fected. MMT would occur at the same frequencies since
it is a re�ection of the internal dynamics of the neuron.

5. Summary of results

We would like to conclude the article by stating its
main results:

• Stimulation by periodic biphasic pulses gives the
same global bifurcation diagram in the period�
amplitude plane as stimulation by monophasic
pulses.

• There is a multimodal transition between the
mode-locked states 2:1 and 3:1. This is a line of
critical points Tmm, Imm such that below the tran-
sition, where Ti < Tmm, only odd response modes
exist. Even modes appear for Tmm < Ti.

• We discovered a new phenomenon: the vanishing
of the modes 2, 5, 8, . . . in the regime of irregular
�ring between the 3:1 and 4:1 states.

• The maximum threshold is obtained near Ti ≈
5.5 ms, which is of order Tres/3, between the en-
trained states 3:1 and 4:1.

• The minimum threshold at the tip of the main res-
onance is obtained for the inter-phase gap of about
5 ms. This value of IPG is also associated with the
minimum energy needed to elicit the response.

• The location of the minimum threshold depends on
the size of IPG. For biphasic pulses with τ = τ1 =
0.6 ms the tip of the resonance is located at Ti ≈
17.5 ms. For increasing IPG the resonance moves
to higher values, reaching 18.3 ms for τ1 = 5 ms.

• The �ring frequency is a continuous, square root
function of the pulse amplitude at the resonance.

• The resonant neuron of the HH type can be forced
to �re with arbitrarily low frequency f0 by de-
livering current pulses of amplitude I0 ≈ Ith(1 +
f20 /2f

2
res).

• The antiresonant e�ects at high stimulation fre-
quency, such as the multimodal transition, may
help to explain the therapeutic mechanism of DBS.
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