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The paper presents a simple and e�ective method to calculate polarization and di�raction of the Gaussian beam
in nonlinear and weakly dissipative plasma. The presented approach is a combination of quasi-isotropic approxi-
mation of geometric optics with complex geometrical optics. Quasi-isotropic approximation describes the evolution
of polarization vector reducing the Maxwell equations to coupled ordinary di�erential equations of the �rst order
for the transverse components of the electromagnetic �eld. Complex geometrical optics describes the Gaussian
beam di�raction and self-focusing and deals with ordinary di�erential equations for Gaussian beam width, wave
front curvature, and amplitude evolution. As a result, the quasi-isotropic approximation + complex geometrical
optics combination reduces the problem of di�raction and polarization evolution of an electromagnetic beam to the
solution of the ordinary di�erential equations, which enable to prepare fast and e�ective numerical algorithms. Us-
ing combined complex geometrical optics/quasi-isotropic approximation for weakly anisotropic plasma, we assume
that nonlinearity of anisotropy tensor is small and we restrict ourselves to considering only isotropic nonlinearity.
The quasi-isotropic approximation e�ectively describes the evolution of microwave and IR electromagnetic beams
in polarimetric and interferometric measurements in thermonuclear reactors and the complex geometrical optics
method can be applied for modeling of electron cyclotron absorption and current drive in tokamaks.
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1. Introduction

Electromagnetic wave propagation in weakly
anisotropic plasma is described by quasi-isotropic
approximation (QIA) of the geometrical optics method
[1�4]. This method reduces the Maxwell equations to
the coupled di�erential equations of the �rst order. As
a modi�cation of geometrical optics, the QIA approach
does not describe di�raction processes, which might
distort the el-m waves propagating in the nonlinear
magnetized plasma. However, there exists an oppor-
tunity to describe di�raction processes by the way of
combining the QIA equations with the equations of
complex geometrical optics (CGO) which adequately
describe di�raction processes for Gaussian beams.
The QIA method possesses three equivalent forms:

complex polarization angle (CPA) [5, 6], complex am-
plitude ratio (CAR) [7], and angular variable technique
(AVT) [8, 9]. The method is applied to the problem
of electromagnetic wave propagation in the magnetized
cylindrical plasma.
The CGO has two equivalent forms: the ray-based

form, which deals with complex rays [10�16], that is
with trajectories in a complex space, and the eikonal-
-based form, which uses complex eikonal instead of com-
plex rays [16]. An important feature of CGO is its
ability to describe Gaussian beam (GB) di�raction in
both ray-based and eikonal-based approaches. This pa-
per describes the advantages of the eikonal-based form
of CGO for description of Gaussian beam di�raction
and self-focusing in nonlinear lossy plasma. Recently,

eikonal-based CGO method has been generalized for the
case of inhomogeneous [17�19] and nonlinear Kerr type
media [20]. In the range of sub-millimeter microwaves
and moderate infrared waves tokamak plasma (includ-
ing JET, ITER) is weakly anisotropic, weakly inhomo-
geneous and weakly nonlinear. To authors knowledge
there is not alternative approach to that presented in
this paper.

2. Basic equations of QIA

Let us present the dielectric tensor εij as a sum of
isotropic and anisotropic parts

εij(r) = ε0(r)δij + vij(r), (1)

where δij is a unit tensor. For a weakly anisotropic
medium, tensor νij is small as compared with �isotropic�
permittivity ε0. We involve an �anisotropic� small pa-
rameter

µA =
max |νij |

ε0
� 1, (2)

which is additional to the conventional �geometrical�
small parameter

µGO =
λ0
L
� 1. (3)

Here λ0 is the beam wavelength and L ∼ 1/|∇ε0| is a
characteristic scale of the medium inhomogeneity.
The QIA equations can be arrived at by expanding

solution of the Maxwell equations in powers of the com-
bined small parameter

µ = max(µA, µGO). (4)

In the lowest order in this parameter, QIA leads to the

(39)
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wave �eld in the form [1�4]:

E = ΓA exp(ik0ψ), (5)

where A exp(ik0ψ) is a scalar wave �eld in an isotropic
medium of permittivity ε0, Γ is a polarization vector
and k0 = 2π/λ0 is the wave number. The amplitude
A(r) and eikonal ψ(r) are complex-valued and satisfy the
equations of CGO, which are presented in Sect. 3. The
polarization vector Γ is orthogonal to the unit vector l,
tangent to the ray, and can be presented as superposition

Γ = Γ1e1 + Γ2e2, e1 ⊥ e2 ⊥ l, (6)

where e1 and e2 are the unit vectors orthogonal to
the ray.
Convenient choice of the unit vectors e1, 2 belongs

to Popov [21], who introduced the orthogonal curvilinear
coordinates system, which performs parallel transport of
the vector wave �eld E along the ray (so-named Popov's
torsionless coordinate system). According to [21], the
unit vectors e1, 2 satisfy the equations

dei
dτ

= −1

2
(ei · ∇ ln ε0) l, i = 1, 2, (7)

where τ is a parameter changing along the ray, connected
with the arc length σ by the relation dτ = dσ/

√
ε0.

Within the framework of the Popov coordinate system,
the QIA equations take the following form:

dΓ1

dτ
=

i

2
k0(ν11Γ1 + ν12Γ2),

dΓ2

dτ
=

i

2
k0(ν21Γ1 + ν22Γ2). (8)

Thus, within the framework of QIA approach, the de-
scription of polarization appears to be a separate form of
the description of the scalar wave function A exp(ik0ψ),
which corresponds to the scalar wave �eld in the isotropic
medium.
Polarization of an electromagnetic wave can be de-

scribed also by complex polarization angle (CPA) γ =
γ′ + iγ′′, de�ned by relation:

tan γ =
Γ2

Γ1
. (9)

As is shown in [6], the real part of CPA γ′ character-
izes orientation of the large semi-axis of the polarization
ellipse, whereas the hyperbolic tangent of the imaginary
part tanh γ′′ de�nes ellipticity and CPA obeys a very sim-
ple equation

dγ

dτ
=

ik0
4

(ν21 − ν12) +
ik0
4

[
(ν22 − ν11) sin 2γ

− (ν12 + ν21) cos 2γ
]
. (10)

A similar equation can be written for complex amplitude
ratio (CAR) ζ = Γ2

Γ1
[7]. Within the framework of an-

gular variable technique (AVT) [8], we can also derive
equations for angular variables: azimuthal angle of the
polarization ellipse ζ and ellipticity angle χ, whose tan-
gent can be interpreted as a ratio of minor and major
axes.

3. Basic CGO equations

Like traditional geometrical optics, CGO starts with
the presentation of the wave �eld in the form of Debye
expansion in inverse powers of wave number

u(r) =

∞∑
m=0

Am(r)

(ik0)
m exp (ikψ(r)) , (11)

where ψ is complex eikonal and A is complex amplitude.
Substituting the Debye expansion into the wave equation

∆u(r) + k20ε0(r)u(r) = 0, (12)

where

ε0(r)=Re (ε(r)) +iIm (ε(r)) =ε0R(r)+iε0I(r), (13)

and supposing the imaginary part ε0I(r) to be small as
compared with ε0R(r) correspondingly and manipulating
ε0I(r) into quantity of order of 1/k0, an eikonal equation
is obtained

(∇ψ)
2

= ε0R(r), (14)

which depends only on the real part of plasma permittiv-
ity and transport equation for amplitude of m = 0 order
in the form

2 (∇A0∇ψ) +A0∆ψ + k0ε0I(r)A0 = 0, (15)

which contains attenuation factor k0ε0I(r)A0.

The CGO method deals with paraxial beams, which
implies the smallness of the following two parameters:

µDIF =
λ

w
� 1, (16)

µPARAX =
w

L
� 1, (17)

where w is the beam width and L ∼ |∇ε|−1 is the charac-
teristic scale of the medium inhomogeneity. The di�rac-
tion parameter (16) determines the angle of the beam
di�raction widening, whereas the �paraxial� parameter
(17) requires the beam width to be small as compared
with the characteristic scale of the medium inhomogene-
ity. To generalize CGO method to make it applicable to
the case of nonlinear plasma, we introduce two additional
small parameters

µNL =
λ

LNL
� 1, (18)

µNLPARAX =
w

LNL
� 1, (19)

where LNL ∼ 1/εNL|A0|2 represents the characteris-
tic nonlinear scale, A0 denotes the initial amplitude of
GB, and parameter εNL denotes nonlinear coe�cient of
plasma nonlinearity, when we limit ourselves to low signal
intensities.

In accordance with paraxial approximation, the per-
mittivity ε0R = ε0R(r) on the right-hand side of Eq. (14)
can be expanded as a Taylor series in small deviation
ξ = ξ1e1 + ξ2e2 in the form

ε0R(r) = ε0R (rc) + [(ξ∇⊥) ε0R]r=rc

+

[
1

2
(ξ∇⊥)

2
ε0R

]
r=rc

+ O
(
µ3
PARAX

)
, (20)
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where ∇⊥ = ∂

∂ξ
. We assume that rc represents the cen-

tral ray of the wave beam. Following Popov [21], we intro-
duce the curvilinear coordinates (τ, ξ1, ξ2) for description
of beam evolution by relation [15, 18]:

r = rc(τ) + ξ1e1 + ξ2e2. (21)

3.1. Riccati equation for complex curvature

According to paraxial approximation, pioneered by
Luneburg [22], the eikonal ψ can be presented as a sum

ψ(ξ1, ξ2, τ) = ψc(τ) +
1

2
Bij(τ)ξiξj + . . . , (22)

where the �rst term corresponds to the central ray
ψc(τ) =

∫ √
ε0(rc)dτ , and the second term quadratic

in ξi contains the tensor Bij of the wave front curva-
ture. Linear terms ξi turn out to be zeros in virtue of the
Fermat principle, whereas the terms of higher order are
small in paraxial approximation [15, 18].
Substituting (22) into the eikonal Eq. (14) leads to Ric-

cati equation for parameters Bij , which in fact form the
curvature tensor of the wave front [15, 18]:

dBij
dτ

+BikBkj = αij , (23)

where tensor

αij(τ)=

[
1

2

∂2ε0R(r)

∂ξi∂ξj
− 3

4ε0(r)

∂ε0R(r)

∂ξi

∂ε0R(r)

∂ξj

]
r=rc

(24)

describes here the in�uence of refraction on complex cur-
vature tensor Bij . The real part of matrix Bij charac-
terizes the curvature of the wave front and the principal
values Ri of the curvature matrix Rij(τ) = ReBij are
proportional to the principal curvatures κi:

Ri = κi. (25)

At the same time, the principal values Ii of matrix
Iij(τ) = ImBij determine the principal widths of the
Gaussian beam wi in the following way [18]:

Ii =
1

k0w2
i

. (26)

3.2. Transport equation for complex GB amplitude

In curvilinear coordinates (τ, ξ1, ξ2), the transport
Eq. (15) for A = A(τ), takes the form

1

h2
dA2

dτ

∂ψ

∂τ
+

[
1

h

∂

∂τ

(
1

h

∂ψ

∂τ

)
+
∂2ψ

∂ξ21
+
∂2ψ

∂ξ22

]
A2

+ k0ε0I(r)A2 = 0, (27)

where

h =
√
ε(r)

(
1− (ξ∇⊥) ε(r)

2ε(r)

)
r=rc

(28)

is the Lamé coe�cient. In accordance with paraxial ap-
proximation and introducing modi�ed amplitude Ã =

ε
1/4
c A, Eq. (27) takes the following form:

dÃ

dτ
+

1

2
[TrBij + k0ε0I(r)] Ã = 0, (29)

where

TrBij ≡ Bii = B11 +B22 (30)

and εc denotes permittivity measured along propagation
trajectory.
By integrating Eq. (29), the complex amplitude of GB

takes the following form:

Ã = Ã0 exp

(
−1

2

∫
TrBij dτ

)
exp

(
−k0

2

∫
ε0I(r)dτ

)
.

(31)

Thus, the wave �eld of the Gaussian beam in a weakly
anisotropic medium is presented by the expression

E = Γ
Ã0

4
√
ε0 (rc)

exp

(
ik0

(
ψc(τ) +

1

2
Bij(τ)ξiξj

))
× exp

(
−1

2

∫
TrBij dτ

)
exp

(
−k0

2

∫
ε0I(r)dτ

)
(32)

and taking into account that Bij(τ) = Rij(τ) + iIij(τ)
we obtain

E = Γ
Ã

4
√
ε0 (rc)

exp

(
−1

2
k0Iij(τ)ξiξj

)
× exp

(
ik0

(
ψc(τ) +

1

2
Rij(τ)ξiξj

))
× exp

(
−1

2

∫
TrBij dτ

)
exp

(
−k0

2

∫
ε0I(r)dτ

)
,

(33)

where polarization vector Γ obeys QIA Eqs. (8), the com-
plex curvature tensor Bij(τ) satis�es the Riccati Eq. (23)

and the amplitude Ã is determined by Eq. (29) as for
paraxial geometrical optics. The essential distinction
from real valued paraxial approximation is that Eq. (33)
describes di�raction evolution of the Gaussian beam.
The examples of di�raction behavior of GB are demon-
strated in [17�19], whereas the GB evolution in nonlinear
media of the Kerr type is presented in [20].

4. Gaussian beam di�raction and self-focusing

in nonlinear and weakly dissipative

magnetized plasma

The interest in GB evolution in magnetized plasma is
driven at least by two problems: microwave plasma di-
agnostics in large thermonuclear reactors and radio wave
propagation in the Earth ionosphere.

4.1. Evolution of polarization vector and complex
polarization angle

Let us consider an axially symmetric polarized wave
beam propagating in cylindrically symmetric nonlinear
magnetized and lossy plasma. In such a case, e1 and e2
are mutually orthogonal unit vectors, orthogonal to the
ray r = r(τ), where coordinate τ plays a role of the z
axis, whereas coordinates ξ1, ξ2 along the units vectors
e1, e2 correspond to x and y axes, respectively.
The anisotropy tensor νij for weakly anisotropic

plasma, where ωp/ω � 1 has the following form [23]:
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νij =

[
−uV

(
sin2 α‖ sin2 α⊥ + cos2 α‖

)
iV
√
u cosα‖ + uV sin2 α‖ sinα⊥ cosα

− iV
√
u cosα‖ + uV sin2 α‖ sinα⊥ cosα⊥ −uV

(
sin2 α‖ cos2 α⊥ + cos2 α‖

) ]
, (34)

where u = (ωc/ω)2 = (eB0)2/(mcω)2 is squared elec-
tron cyclotron frequency ratio to the signal frequency,
v = (ωp/ω)2 = 4πe2Ne/mω

2 is squared plasma frequency
ratio to the signal frequency, Ne is the electron density,
e and m are the electron charge and mass, parameter V
is equal to V = v/(1 − u), B0 is a static magnetic �eld,
α‖ stands for the angle between the ray tangent l (in our
case there is unit vector along the z axis), and the vector
B0 and α⊥ represent the angle between transverse com-
ponent B0⊥ and unit vector e1 of Popov's coordinate
system (Fig. 1).

Fig. 1. Orientation of the static magnetic �eld B0

within the framework of the orthogonal coordinate sys-
tem, formed by the unit vectors e1, e2 and by the vector
tangent to the ray, which in our case is oriented along
the z axis.

As a result, QIA equations for high frequency electro-
magnetic waves in magnetoactive plasma take a form

dΓ1

dz
= (ik0/2)V

[
− u(sin2 α‖ sin2 α⊥ + cos2 α‖)Γ1

+ (i
√
u cosα‖ + u sin2 α‖ sinα⊥ cosα⊥)Γ2

]
,

dΓ2

dz
= (ik0/2)V

[
(− i
√
u cosα‖

+ u sin2 α‖ sinα⊥ cosα⊥)Γ1

− u
(
sin2 α‖ cos2 α⊥ + cos2 α‖

)
Γ2

]
. (35)

As it follows from Eq. (34), CPA γ obeys the equation

dγ

dz
=
k0
2
V
√
u cosα‖ −

ik0
4
uV sin2 α‖ sin(2γ − 2α⊥).

(36)

By separating the real and imaginary parts of Eq. (36),
the complex valued equation for CPA can be reduced to
the system of two real equations for γR = Re(γ) and
γI = Im(γ):

dγR
dz

=
k0
2
V
√
u cosα‖ −

1

4
uV sin2 α‖ cos (2γR − 2α⊥)

× sinh 2γI, (37)

dγI
dz

=
k0
4
uV sin2 α‖ sin(2γR − 2α⊥) cosh 2γI. (38)

Equations (35)�(38) adequately describe either polariza-
tion vector of electromagnetic waves and complex po-

larization angle evolution in magnetized plasma and in-
cludes all the known phenomena in plasma polarimetry.
As a simple and illustrative example, let us describe the
Faraday e�ect and Cotton�Mouton phenomenon using
CPA. The Faraday e�ect linear in magnetic �eld B0 pre-
vails when inequality cosα‖ �

√
u holds, which corre-

sponds to quasi-longitudinal propagation [23]. Under the
conditions of quasi-longitudinal propagation, the second
term in Eq. (36) is small as compared with the �rst one
and Eq. (36) takes a form

dγ

dz
=
k0
2
V
√
u cosα‖, (39)

and has the following solution:

γR = γR(0) +
k0
2

∫ z

0

V
√
u cosα‖dz′, γI = γI(0). (40)

In the above equation, γR describes the Faraday rota-
tion of the polarization angle, taking into account the
initial polarization angle γR(0). The imaginary part
γI = γI(0) is constant along the symmetry axis, which
corresponds to preservation of ellipticity. The Faraday
term in Eq. (40) above becomes negligibly small near the
orthogonality point α‖ = π/2, where inequality holds

cosα‖ �
√
u, corresponding to quasi-transverse prop-

agation. The leading role in Eq. (36) belongs then to
the second term, describing the Cotton�Mouton e�ect,
so Eq. (36) becomes

dγ

dz
= − ik0

4
uV sin2 α‖ sin(2γ − 2α⊥), (41)

and has the solution

γR = γR(0),

γI = −k0
4

∫ τ

0

uV sin2 α‖ sin(2γ − 2α⊥)dz, (42)

where the imaginary part is responsible for the transfor-
mation of a linearly polarized wave into an elliptically
polarized wave.

4.2. Evolution of the GB width, wave front curvature
and complex amplitude

For an axially symmetric wave beam in cylindrically
symmetric plasma, CGO suggests the following form of
solution:

E(ρ, z) = A exp (ikψ)

= A(z) exp
(

ik
(
z +B(z)ρ2/2

))
, (43)

where ψ is complex-valued eikonal, ρ =
√
x2 + y2 is a

distance from the z axis and complex parameter B =
R+ iI has now the form

R = κ(z), I =
1

k0w2(z)
, (44)

where, as in Sect. 3, κ = κ(z) is the wave front curvature
and w = w(z) denotes the GB width. Substituting (44)
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in Eq. (43), we obtain the Gaussian beam of the form

E(ρ, z) = A(z) exp

(
− ρ2

2w2(z)

)
exp

(
−
∫
κdz

)
(45)

× exp

(
ik

(
z + κ(z)

ρ2

2

))
exp

(
− i

∫
dz/k0w

2

)
.

Let us consider the GB (45) propagating in nonlinear
dissipative plasma whose isotropic part of dielectric per-
mittivity (1) has the form [24�28]:

ε0(z, ρ) = ε0L +
ω2
p

ω2

[
1−exp

(
−εNL|E|2

) ]
+ iε0I, (46)

where

ε0L = 1−
ω2
p

ω2
(47)

is the linear part of plasma permittivity, parameter εNL

denotes nonlinear coe�cient of ponderomotive plasma
nonlinearity and we assume that the imaginary part of
plasma permittivity is constant ε0I = const. A more
general case when ε0I is a function of EE∗ is very di�-
cult to pursue mathematically, hence we limit ourselves
to the case when ε0I is �eld independent (i.e. absorp-
tion is linear). The case of nonlinear plasma absorption
was analyzed in [29]. Further modi�cations of Eq. (23)
and Eq. (29) for the case of linear absorption, where
ε0I = const leads to the evolution of �ux energy in non-
linear dissipative plasma in the form

w2|A|2 = w2
0 |A0|2 exp (−k0ε0Iz) , (48)

where w0 is the initial beam width and A0 denotes the
initial amplitude. Taking advantage of the CGO proce-
dure presented in Sect. 3, the eikonal equation can be
presented in coordinates (ρ, z), and after expansion of
permittivity ε0(z, ρ) in the Taylor series in ρ in the vicin-
ity of symmetry axis z, we obtain a Riccati equation

dB

dz
+B2 = α. (49)

Parameter α for axially symmetric medium with permit-
tivity (46), taking into account (44) and (48) is equal to

α(z) = −
ω2
pp

ω2w4(z)
exp

(
− p

w2(z)

)
exp (−k0ε0Iz) , (50)

where p = γw2
0|A0|2. The Riccati Eq. (49) is equivalent

to the set of two equations for the real and imaginary
parts of the complex curvature B = R+ iI:{

dR
dz +R2 − I2 = α,
dI
dz + 2RI = 0.

(51)

Substituting R = κ, I = 1/k0w
2 in the second of

Eqs. (51) we obtain the known relation between the beam
width w and the wave front curvature κ, derived in [20]:

κ =
1

w

dw

dz
. (52)

Substituting the next Eq. (52) into the �rst of Eqs. (51)
we obtain the ordinary di�erential equation of the second
order for GB width

d2w

dz2
+

ω2
pp

ω2w3(z)
exp

(
− p

w2(z)

)
exp (−k0ε0Iz)

= 1/(k20w
3). (53)

For the following parameters: ω2
p/ω

2 = 0.2, w0 =

0.1 mm, λ = 0.01 mm and ε0I = 10−4 Eqs. (52, 53)
together with Eq. (48) are solved numerically. The solu-
tions are shown in Figs. 2�7.

Fig. 2. Wave front curvature evolution in under-
-critical regime of nonlinear cylindrical plasma, where
εNL|A0|2 = 10−4(P = 0.4Pcrit), µA = 0.2, µGO =
0.02, µDIF = 0.1, µPARAX = 0.2, µNL = 1/30, and
µNLPARAX = 0.01. The plot is shown in the range from
0 to one di�raction distance LD = k0w

2
0.

Fig. 3. Beam width evolution in under-critical regime
of nonlinear cylindrical plasma, where εNL|A0|2 =
10−4(P = 0.4Pcrit), µA = 0.2, µGO = 0.02, µDIF = 0.1,
µPARAX = 0.2, µNL = 1/30, and µNLPARAX = 0.01.
The plot is shown in the range from 0 to 15 di�raction
distances.

It is notable in Figs. 2�4 that in under-critical regime,
where P < Pcrit, the wave front curvature initially in-
creases to maximal value and next decreases asymptot-
ically. For such a case, the GB width increases unlim-
itedly, whereas the absolute value of complex amplitude
decreases asymptotically to zero. In over-critical regime
Figs. 5�7, where P > Pcrit, the wave front curvature oscil-
lates with decreasing amplitude of these oscillations. The
GB width oscillates with increasing amplitude of these
oscillations. The modulus of complex amplitude initially
decreases to the minimal value and next increases to the
maximal value, after that decreasing asymptotically to
zero again.
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Fig. 4. Absolute value |A|/|A0| evolution in under-
-critical regime of nonlinear cylindrical plasma, where
εNL|A0|2 = 10−4(P = 0.4Pcrit), µA = 0.2, µGO =
0.02, µDIF = 0.1, µPARAX = 0.2, µNL = 1/30, and
µNLPARAX = 0.01. The plot is shown in the range from
0 to one di�raction distance.

Fig. 5. Wave front curvature evolution in overcritical
regime of nonlinear cylindrical plasma, where γ|A0|2 =
10−3 (P = 4Pcrit), µA = 0.2, µGO = 0.02, µDIF =
0.1, µPARAX = 0.2, µNL = 0.1, and µNLPARAX = 1/30.
The plot is shown in the range from 0 to 15 di�raction
distances.

Fig. 6. Beam width evolution in overcritical regime of
nonlinear cylindrical plasma, where γ|A0|2 = 10−3 (P =
4Pcrit), µA = 0.2, µGO = 0.02, µDIF = 0.1, µPARAX =
0.2, µNL = 0.1, and µNLPARAX = 1/30. The plot is
shown in the range from 0 to 15 di�raction distances.

Fig. 7. Absolute value |A|/|A0| evolution in overcrit-
ical regime of nonlinear cylindrical plasma, where
γ|A0|2 = 10−3 (P = 4Pcrit), µA = 0.2, µGO = 0.02,
µDIF = 0.1, µPARAX = 0.2, µNL = 0.1, and µNLPARAX =
1/30. The plot is shown in the range from 0 to one
di�raction distance.

5. Conclusions

The paper presents a combination of CGO and QIA of
geometrical optics method, which allows to describe both
polarization and di�raction changes of the wave �eld.
CGO describes evolution of the GB width and wave front
curvature under the in�uence of di�raction on the basis of
the Riccati type ordinary di�erential equation of the �rst
order, whereas complex amplitude of the Gaussian beam
can be found from the transport equation which is also
a �rst order ordinary di�erential equation. At the same
time, QIA determines polarization of the electromagnetic
wave on the basis of the �rst order coupled equations for
the components of polarization vector, or on the basis
of the �rst order di�erential equation for complex polar-
ization angle. As a result, the combined QIA/CGO ap-
proach reduces di�raction and polarization evolution of
the Gaussian beam in the nonlinear plasma to solution
of the ordinary di�erential equations of the �rst order.
These simple and e�ective approaches are illustrated by
the example of Gaussian beam propagation and di�rac-
tion in magnetized cylindrical plasma with ponderomo-
tive nonlinearity and absorption. The presented method
also �nds application in ionosphere plasma, or any other
weakly anisotropic nonlinear media.
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