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The classical, electrodynamic de�nition of the ampere is incoherent with quantum electrodynamics. The
problem, although insigni�cant at the macroscopic scale, manifests clearly at the nanostructure level, where the
consistently quantum approach is necessary. In this paper, we consider the Casimir e�ect to quantify inconsistencies
that could have resulted if electric metrology of microstructures and nanostructures (including graphene) had been
based on classical electrodynamics and the current SI de�nition of the ampere. The issue is discussed in the
context of the New SI program, where the base electric unit is to be rede�ned by �xing the numerical value of the
elementary charge. The conclusion supports the case for a prompt rede�nition of the base electric unit, which will
make the electric metrology in general, and the electric metrology of nanostructures in particular, coherent with
the international system of units.
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1. Introduction

Current de�nitions of the SI base units re�ect diverse
points of view on how the base units ought to be de-
�ned; those views evolved considerably after the Metric
Convention had been signed. The base unit of mass is
still de�ned as the mass of the primary artefact (the In-
ternational Prototype of the Kilogram); the kelvin is de-
�ned in terms of a physical property of bulk matter (the
triple point of water); the second is de�ned according
to Maxwell's concept of atomic standards (the caesium
clock); the de�nition of the candela has evolved from the
�established equations of science� (the black body radia-
tion law); and the metre is de�ned by �xing the numer-
ical value of a fundamental physical constant (the speed
of light in vacuum, c) [1]. A variety of visions is a much
celebrated value in humanities, but the diversity in pri-
mary de�nitions that establish the international system
of units does not contribute to the coherence of the SI;
this will change once the New SI is instituted, where all
base units are de�ned in a uniform way, by �xing numer-
ical values of physical constants [2].
The current de�nition of the ampere reads: �The am-

pere is that constant current which, if maintained in two
straight parallel conductors of in�nite length, of negligi-
ble circular cross-section, and placed 1 metre apart in
vacuum, would produce between these conductors a force
equal to 2×10−7 newton per metre of length� [1]. Even in
this single de�nition, one can recognize three di�erent el-
ements, characteristic of various methods of de�ning the
SI units: (1) The electrodynamic de�nition of the ampere
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is based on �established equations of science� (Maxwell's
equations); (2) it implicitly† �xes the numerical value of
the magnetic constant µ0, which can be viewed as a pre-
cursor of the 1983 de�nition of the metre and a paradigm
for the New SI concept; (3) the de�nition explicitly states
the primary method of realization of the unit, which pre-
determines themise en pratique of the ampere. If validity
of any of the three elements is put into doubt, the whole
de�nition can be questioned.

The above de�nition of the base electric unit had been
worked out in the mid 1940's [3] and it was adopted
by the 9th CGPM in 1948 [4]. The de�nition implic-
itly assumes that classical electrodynamics is perfectly
exact. At nearly the same period of time (1946�1949) a
new theory emerged, quantum electrodynamics‡ (QED),

†Neither Maxwell's equations nor the magnetic constant are ex-
plicitly mentioned in the de�nition of the ampere, because the clas-
sical theory of the electromagnetic �eld had no alternative (QED)
at the time when the de�nition of the ampere had been designed
(mid 1940's). The numerical value of µ0 is implicit in the cited
value of the electromagnetic force.
‡The QED has been preceded by (1) the old quantum theory of

Planck, Einstein, Bohr, de Broglie and Compton, which assumed
a phenomenological approach to quantization of the electromag-
netic �eld and to motion of massive particles (1900�1925); and
by (2) the canonical quantum theory of Heisenberg, Schrödinger
and Dirac, where quantized massive particles interact with the
classical electromagnetic �eld (1926�1945). The QED, the fully
quantum theory of electrons and photons, developed by Dirac,
Fermi, Bethe, Tomonaga, Schwinger and Feynman (1946�1949),
has been followed by more general forms of the quantum �eld theory
(QFT), such as the electroweak theory (Weinberg, Glashow, Salam,
1960s), quantum chromodynamics and the Standard Model (1960s�
present), and the hypothetical Grand Uni�ed Theory (1970s�
present). Those advanced theories are not in the scope of metrology

(3)
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which showed that validity of Maxwell's equations is re-
stricted to macroscopic situations, where the electromag-
netic �eld does not manifest its quantum nature. Ac-
cordingly, the current de�nition of the ampere, which is
based on the classical theory of the electromagnetic �eld,
is suitable for macroscopic systems, but it is inadequate
in the case of nanoscopic systems, where quantization of
the electromagnetic �eld enters the picture.

Modern electric metrology works well because it has
partly circumvented the problem of the discord between
the classical de�nition of the ampere and the QED by
switching to the primary quantum standards of voltage
(based on the Josephson e�ect) and resistance (based on
the quantum Hall e�ect), which are fully consistent with
modern quantum physics [6]; however, the classical de�-
nition of the base electric unit remained unchanged. The
move has been endorsed by the 19th CGPM in 1991 [7],
but the price for it is the SI-incompatibility of electric
measurements traceable to these two primary quantum
standards. The New SI rede�nition of the base elec-
tric unit� will remove the current dichotomy in electric
units traceable to the SI ampere or to the primary quan-
tum standards, and this is a priority for electric metrol-
ogy, subjectively equally important and even more urgent
than the rede�nition of the SI kilogram¶.

Another, related reason for a prompt rede�nition of
the base electric unit, which is taken up in this paper,
is the emergence of a new �eld of electric metrology, i.e.
metrology of nanostructures, which preferably should be
consistent with the international system of units from
the very beginning. Electric measurements in the mi-
cro/nano scale might give signi�cantly di�erent results,
where the raw measurement data (e.g. displacements in
miniaturized micro-electromechanical system (MEMS) or
nano-electromechanical system (NEMS) devices [8]) are
interpreted with the use of the classical approximation
or in the QED regime; the rule of thumb is that the dif-
ferences increase where the size of the considered system
decreases.

The SI de�nition of the ampere, based on Maxwell's
equations, implies the possibility of current-scaling and
size-scaling in primary realizations of the base electric
unit, where maintaining of exactly 1 A currents in par-

yet, because metrology has not formally entered the high-energy
domain so far. However, it is only a matter of time when the inter-
national metric system of units covers also the high-energy domain
and the SI base units for the weak and the strong interactions will
have to be designed [5].

�Although the proposed version of the New SI keeps the ampere
as the base electric unit [2], there are strong physical and logical
arguments for choosing the coulomb as the base unit.
¶However, rede�nition of the kilogram by �xing the numerical

value of the Planck constant h is a precondition for fully coherent
incorporation of the quantum standards of voltage and resistance
into the structure of the international system of units, because the
Josephson constant and the von Klitzing constant involve both the
elementary charge e and the Planck constant h.

allel conductors that are exactly 1 m apart is not feasi-
ble in practice (recall the current balance). The classi-
cal SI de�nition of the base electric unit does not allow
for switching to more advanced theories of the electro-
magnetic �eld, consistent with the size of the considered
system, because otherwise the de�nitional value of the
unit would become dependent on the level of theoretical
sophistication of the SI user. Consequently, modern elec-
tric measurements in nanoscopic systems are not consis-
tently traceable to the classical de�nition of the ampere
and classical realizations of electric units.

The Casimir e�ect provides an opportunity to illus-
trate quantitatively the problem at hand. In classical
electrodynamics, the energy and the force of interaction
between two �at, parallel, electrically neutral, conduc-
tive plates that carry no current are exactly zero. This
is not so in quantum electrodynamics, where quantum
�uctuations result in a nonzero energy and force of in-
teraction between the two plates. The Casimir force in-
creases rapidly with the decreasing separation between
the plates. A comparison of the Casimir interaction with
the classical interaction between surface currents or sur-
face charges provides a measure of how signi�cant quan-
tum e�ects are in electric measurements in layered struc-
tures of a given size.

In this paper, we examine the size-scaling problem
that concerns the SI-traceable electric measurements in
layered structures; it involves the interplay of three ele-
ments: the Casimir e�ect, metrology of nanostructures,
and the rede�nition of the base electric unit. Due to the
high symmetry of the considered system, the force and
the energy of the Casimir interaction can be expressed in
explicit, closed forms, which signi�cantly simpli�es the
analysis. We begin with a brief review of the Casimir
e�ect, su�cient for further considerations, and provide
references to primary works and more advanced treat-
ments. In the next section, we compare the Casimir in-
teraction with classical electromagnetic interactions in
layered structures, to quantify discrepancies between the
classical and the quantum interpretation of raw electric
measurements in layered structures of di�erent size. The
subsequent section gives a brief summary of the magni-
tude of quantum e�ects in electric measurements, related
to typical values of electric quantities in layered struc-
tures; we draw on typical parameters that occur in those
structures (including graphene), such as carrier density,
current density, bias voltage, and strength of the electric
�eld. The comparison shows that the problem is usually
negligible in millimetre-size structures, the quantum ef-
fects are clearly noticeable in electric measurements of
microstructures, and the classical approach fails entirely
at the nanostructure level, as expected. This supports
the call for a prompt rede�nition of the base electric
unit, as a precondition for making the electric metrology
of nanostructures fully compatible with the international
system of units. A brief general discussion concludes this
paper.
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2. Basics of the Casimir e�ect reviewed

This section provides basic information on the origin
of the Casimir e�ect, the Casimir force, energy of the
Casimir interaction and the lifetime of quantum �uctua-
tions that manifest as the Casimir e�ect; references are
given to reviews and original works on the subject.

2.1. Phenomenological intuition

In the classical approximation, the physical vacuum
is just an empty space. In the quantum approach, the
physical vacuum hosts short-lived virtual particles, whose
creation and annihilation complies with the Heisenberg
uncertainty principle. The dominating component of
vacuum �uctuations in the low-energy range are virtual
photons and electron�positron pairs (the QED domain),
whereas particle�antiparticle pairs of higher masses con-
tribute to the observable processes only in the high-
-energy regime (the electroweak theory, the QCD and
the standard model). In the low-energy domain, vac-
uum �uctuations are responsible for the Lamb shift, the
anomalous value of the magnetic moment of the elec-
tron (both e�ects are important for scienti�c metrology),
radiative corrections in scattering processes, photon�
photon scattering, etc.
The Casimir e�ect is a manifestation of asymmetry be-

tween vacuum �uctuations in free space and in the vol-
ume subject to boundary conditions. Consider a system
of two �at, parallel, perfectly conducting plates, sepa-
rated by a gap of width a. The continuous density of
states that are available to virtual photons in the two
half-spaces beyond both plates, matches that of the in-
�nite free space. The discrete density of states in the
gap between the two plates is lower, because the bound-
ary condition (vanishing of the electric �eld E‖ on both
boundary surfaces) implies that only certain eigenstates
are available to virtual photons. The lower density of
states within the gap accommodates a lower density of
virtual photons, compared with the density of virtual
photons in the two outer half-spaces‖. Consequently,

‖A similar e�ect occurs in the case of massive charged parti-
cles (carrier electrons or holes) in layered semiconductor nanostruc-
tures. The lower, discrete density of states in a thin layer (in the
potential quantum well) is not able to accommodate as many car-
riers as the bulk matter can, which results in depletion of carriers
in the thin layer. Consequently, the layer acquires the net electric
charge, which a�ects the potential function for the nanostructure
and (1) shifts the quasi-stationary eigenstates in the quantum well
and the corresponding spectral lines [9]; (2) shifts the current reso-
nances in the nanostructure [10]. Besides the analogy between the
discrete carrier eigenstates and the discrete photon eigenstates in a
thin layer, there are also important di�erences: (1) charge carriers
are fermions and therefore must obey the Pauli exclusion principle,
whereas photons are bosons that are not subject to such a con-
straint; (2) since the interaction of charged carriers is much stronger
than the interaction of virtual photons, the canonical quantum the-
ory is su�cient to handle the former case, whereas the Casimir
e�ect is a subtle phenomenon that requires employment of more

interaction of the two plates with the con�ned virtual
photon �eld is weaker than the interaction with vacuum
�uctuations outside the gap. The asymmetry of the in-
teraction with vacuum �uctuations inside or outside the
gap is the source of the net force (the Casimir force) that
pushes the plates toward each other.
An equivalent phenomenological explanation of the ori-

gin of the Casimir e�ect emphasises the role of charge car-
riers inside the plates: �uctuations of the carrier density
in any of the two conducting plates give rise to the short-
-lived local net charges, which induce local net charges of
the opposite sign in the other plate. Interaction between
the induced charges gives rise to the (usually attractive)
Casimir e�ect. The two phenomenological explanations
of the Casimir e�ect are equivalent, just as in the case
of the classical description of a charged capacitor, where
the energy of the interacting system can be viewed either
as (1) a consequence of the electrostatic interaction be-
tween (real) charges of opposite signs on both plates; or
equivalently (2) as a property of the electric �eld between
both plates.

2.2. Magnitude of the Casimir force

The magnitude of the Casimir force F (per unit sur-
face∗∗) of interaction between two �at, parallel, un-
charged, perfectly conducting plates, depends strongly
on the size of the gap a between both plates [11]:

F =
πhc

480a4
. (1)

Figure 1 shows the magnitude of the Casimir force (con-
tinuous line) as a function of the size of the gap, a. Since
a and F can vary over many orders of magnitude, the log-
arithmic scale is used on both axes; the relationship F (a)
in the double logarithmic scale takes on the easy-to-read,
linear form.
The size parameter a of the layered structure is mea-

sured in nanometres, ranging from a = 1 nm = 10 Å
(log a = 0) to a = 106 nm = 1 mm (log a = 6). The
corresponding Casimir force ranges from F = 1.3 ×
10−15 N/m2 (for a = 1 mm) to F = 1.3× 109 N/m2 (for
a = 1 nm). The graph also shows the Young modulus of
graphene (1.09×1012 N/m2 [12, 13]), the tensile strength
of graphene (1.3 × 1011 N/m2 [14]), the stress that has
been recorded in suspended multilayer graphene sheets
(1.5 × 109 N/m2 [15]), and the atmospheric pressure of
1.013 × 105 N/m2, just for comparison. It follows that
the Casimir force is negligible in macroscopic structures
(a ≥ 105 nm), it is small but appreciable in microstruc-
tures (102 nm ≤ a ≤ 105 nm), and can be very signif-
icant in nanostructures (a ≤ 102 nm), reaching values
∼ 104 times higher (at a = 1 nm) than the atmospheric
pressure.

sophisticated methods (although the full-blown QED formalism is
not necessary).
∗∗Since the Casimir force is given per unit surface, it is actually

the Casimir pressure, which is a more precise but rarely used term.
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Fig. 1. Magnitude of the Casimir force F per unit sur-
face (continuous line) is shown as a function of the
separation a between both plates. The horizontal bro-
ken lines show respectively (from the top one): (1) the
Young modulus of a monolayer graphene; (2) the ten-
sile strength of graphene; (3) a typical stress that results
from imperfections of the graphene lattice; and (4) the
atmospheric pressure. The scale on both axes is loga-
rithmic. The unit of F is N/m2 and the unit of a is nm.

2.3. Magnitude of the Casimir energy

The magnitude of the Casimir energy per unit surface,
E is [11]:

E =
πhc

1440a3
(2)

and varies from E = 4.3×10−19 J/m2 (for a = 1 mm) to
E = 4.3× 10−1 J/m2 (for a = 1 nm). The Casimir force
and the Casimir energy satisfy the usual relation between
the force and the potential energy, F = −dE/da. Fig-
ure 2 shows the Casimir energy as a function of the size
of the gap, E(a), see the continuous line; the logarithmic
scale is used on both axes.

Fig. 2. Magnitude of the Casimir energy E per unit
surface (continuous line) is shown as a function of sep-
aration a between both plates. The horizontal broken
lines indicate respectively (from the top one): (1) the en-
thalpy of formation/atomization of graphene per 1 m2;
and (2) the energy of the interlayer interaction in
graphite. The scale on both axes is logarithmic. The
unit of E is J/m2 and the unit of a is nm.

The enthalpy of graphene has not been measured yet.
Assuming that the dissociation enthalpy of one sp2 C�C
aromatic bond of length L = 0.142 nm in graphene is††

∆Hc−c = 4.87 × 105 J/mol, one gets the estimate of

††Di�erent sources give estimates of ∆Hc−c that vary from the

the enthalpy of formation/atomization of a monolayer
graphene‡‡ ∆Hg = 46.5 J/m2; this value and the energy
of the interlayer interaction in graphite (0.32 J/m2 [17])
are shown in Fig. 2 for comparison, see the broken lines.

2.4. Lifetime of the Casimir-type vacuum �uctuations

The characteristic lifetime ∆t of vacuum �uctuations
of energy ∆E = πhc/(1440a) in the volume a3 can be
determined from the Heisenberg principle

∆t ≈ h

4π∆E
≈ 36.5a

c
. (3)

In smaller volumes, energies of quantum �uctuations ∆E
are larger, their lifetime ∆t is shorter and vice versa:
larger volumes imply �uctuations of lower energy, which
however last longer. For example, for a = 1 nm the
energy of vacuum �uctuations is ∆E = 4.3 × 10−19 J =
2.7 eV and their lifetime is ∆t = 1.2 × 10−16 s, whereas
for a = 1 µm, the corresponding quantities are ∆E =
4.3× 10−22 J = 0.0027 eV and ∆t = 1.2× 10−13 s.
Equation (3) shows that the lifetime of virtual photons

is ≈ 36 times larger than the travel time of light between
the plates, which a posteriori justi�es the phenomenolog-
ical model where the discrete virtual photon eigenstates
within the gap are represented by standing waves with
nodes on both interfaces.

2.5. Primary works and the contemporary research
on the Casimir e�ect

The �rst presentation of what is now called the Casimir
e�ect was given in 1948 [18]. The work was a spin-o�
of his earlier research on interaction between a perfectly
conducting plate and a polarizable particle [19]. The the-
oretical predictions of Casimir were �rst con�rmed exper-
imentally by Sparnaay in 1958 [20].
What had begun as a theoretical curiosity became a

research subject of practical importance when miniatur-
ization of electronic elements reached the sub-micrometre
level; the topic is of growing interest in recent years due
to the advent of graphene-based electronics, where ac-
tive elements are of nanometre width. Relevance of the
Casimir e�ect to practical problems in the electronics

low value of 4.52×105 J/mol to the high value of 5.19×105 J/mol.
The magnitude of ∆Hc−c varies, because the �strength� of the aro-
matic bond (bond energy) depends on the aromatic carbon skeleton
of the reference molecule (benzene or fused aromatic rings) and sub-
stituents that a�ect density of delocalized electrons in the rings. We
assumed the intermediate value of ∆Hc−c = 4.87×105 J/mol [16],
which ensures that other estimates of ∆Hc−c lie within ±8%.
‡‡The low average energy E of the Casimir interaction (com-

pared with the enthalpy of graphene ∆Hg) does not warrant that
the virtual �eld cannot facilitate migration of impurities, vacan-
cies, dislocations and other imperfections of the lattice, because
of the statistical nature of quantum �uctuations. The problem of
spontaneous migration, thermal migration and electromigration in
graphene-based nanostructures is of practical importance, because
properties of a monolayer structure are much more sensitive to im-
perfections of the lattice than the bulk material.
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industry has broadened the range of research topics in
this �eld. The current research concentrates on study-
ing the Casimir force with the use of di�erent materials
and thickness of the plates (metals, engineered metama-
terials, and especially much attention is devoted to one
or both plates made of graphene), where the gap can be
�lled with a dielectric material; investigations also con-
cern di�erent geometries of the plates, the edge e�ects,
temperature dependence of the Casimir force, interaction
of the conducting plate with carbon nanotubes, multi-
layer systems, repulsive Casimir force, and some topics of
general interest, such as modi�cation of the Lamb shift in
a cavity, or a new limit on participation of massive parti-
cles in mediation of the gravitational interaction [21�34].
Since this paper employs the Casimir e�ect merely to ex-
amine a speci�c problem of quantum e�ects in electric
metrology of nanostructures, in view of the classical de�-
nition of the ampere, we shall settle for this brief outline
and refer the reader interested in the in-depth studies of
the Casimir e�ect to reviews [35�41] that cover the sub-
ject comprehensively and provide abundance of relevant
references.

3. Magnitude of the Casimir-equivalent

classical electric quantities

Let us assume, just for the sake of the argument, that
quantum standards of electric quantities are not used (as
they are inconsistent with the SI ampere) and the raw
data are interpreted in classical terms (just for consis-
tency); then, the Casimir e�ect would have distorted the
measurement results to a degree dependent on the size
of the considered system��. In this section, we exemplify
the magnitude of this problem in the case of a few electric
quantities.

3.1. The Casimir-equivalent classical surface
current density

Let us compare the Casimir force F with the classical
electrodynamic force of interaction FI (see Eq. (A1)) be-
tween two planar, uniform surface current densities sep-
arated by a distance a. Having equated the two forces
one gets the Casimir-equivalent, classical surface current
density IF :

IF =

√
πhc

240µ0a4
, (4)

which is a measure of discrepancies one would encounter
if measurements of the surface current density were
(mis)interpreted by using classical electrodynamics and
the SI de�nition of the ampere, in a structure that re-
quires quantum treatment.

��Needless to say that metrology is a pragmatic science, which
resorts to quantum standards and quantum theory whenever it is
necessary, even at the price of departing from the de�nitional or-
thodoxy and coherence with the SI system of units.

We can also compare the Casimir energy E with the
classical energy of interaction between two planar, uni-
form surface current densities (see Eq. (A2)), thus ob-
taining the Casimir-equivalent, classical surface current
density IE :

IE =

√
πhc

720µ0a4
, (5)

which also is a measure of discrepancies occurring if clas-
sical electrodynamics and the SI de�nition of the ampere
were used in a situation where the QED enters the pic-
ture. As expected, the two quantities, IF and IE , have
the same dependence on the characteristic dimensional
parameter a and di�er only by a numerical factor ≈ 1.7.
Thus, each of the two quantities can be used to gauge the
�price� for using Maxwell's equations and the classical SI
de�nition of the ampere in the quantum domain.

Fig. 3. The classical surface current density I in two
parallel current-carrying plates, which results in the
force of interaction or the energy of interaction equal
to the Casimir force or the Casimir energy (IF contin-
uous line or IE broken line, respectively), shown as a
function of separation a between both plates. The hor-
izontal broken line represents a typical surface current
density in graphene, I0 = 1 µA/nm. The scale on both
axes is logarithmic. The unit of I is µA/nm and the
unit of a is nm.

The Casimir-equivalent, classical surface currents
IF (a) and IE(a) are shown in Fig. 3. Magnitudes of
the currents depend strongly on the scale of the struc-
ture and range from IF = 4.5 × 10−8 µA/nm and
IE = 2.6 × 10−8 µA/nm for a = 1 mm (log a = 6) to
IF = 4.5 × 104 µA/nm and IE = 2.6 × 104 µA/nm for
a = 1 nm (log a = 0). Let us note that the real (phys-
ical) current density in (monolayer) graphene can reach
�only¶¶� one to a few µA/nm [44, 45], and currents as
high as ∼ 104 µA/nm would damage the sample: the
Casimir-equivalent current is a symbolic measure of how
far we are o� the track, if the quantum structure is anal-
ysed in classical terms, and it is not surprising that the

¶¶The current-carrying capacity of monolayer graphene, multi-
layer graphene, nanoribbons and nanotubes is 1011 ÷ 1013 A/m2

[42�44] (the quantity is restricted by the Joule heat dissipation abil-
ity and electromigration), which is a few orders of magnitude higher
than that of copper in printed circuit boards (≈ 3 × 107 A/m2).
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Casimir-equivalent quantity might acquire values that ex-
ceed the physically realistic �gures.
The ratio of the Casimir-equivalent current to the real

(i.e. physical) surface current is a (relative) measure of
discrepancy between the classical or quantum treatment
of a given system: the smaller the ratio, the better for the
classical approximation. In routine measurements, where
the three-digit accuracy is su�cient, the ratio ∼ 10−3 is
satisfactory; however, reliable reference standards require
that the ratio is on the order of 10−8 or less. The lower
values of the ratio are easier to attain where the real cur-
rent is high; highest surface current densities in layered
structures can be carried by graphene, where the typical
quantity is I0 = 1 µA/nm, although other carbon nano-
structures, e.g. nanotubes, can carry current densities a
few times larger. Figure 3 shows that if we stick with clas-
sical notions and de�nitions scaled down to the a = 1 nm
level (e.g. the double layer of graphene), then measure-
ments of the current with the use of NEMS could be
o� by over 4 orders of magnitude from the correct result.
The systematic relative error associated with the Casimir
interaction approaches ∼ 10−8 only for millimetre-sized
structures (log a ≈ 6).

3.2. The Casimir-equivalent classical surface
charge density

We can also compare the Casimir force F with the clas-
sical electrostatic force of interaction Fσ (see Eq. (A3))
between two uniform surface charge densities σ = Q/S,
where Q is the magnitude of the electric charge on each
of the surfaces S, separated by a distance a. Equating
the two forces, we get the Casimir-equivalent, classical
surface charge density σF :

σF =

√
πhcε0
240a4

. (6)

Having compared the Casimir energy E with the classical
electrostatic energy of interaction Eσ (see Eq. (A4)) be-
tween two uniform surface charge densities, we obtain the
Casimir-equivalent, classical surface charge density σE :

σE =

√
πhcε0
720a4

. (7)

The two Casimir-equivalent surface charge densities,
σF and σE , are shown in Fig. 4 as functions of a. The
ratio of the Casimir-equivalent surface charge density to
the real (i.e. physical) surface charge density in a double-
-layered structure is a (relative) measure of how signi�-
cant quantum e�ects are in the static case. The smaller
the ratio, the classical approximation works better and
the scaling problem is less important; large real charge
densities on the plates make the ratio smaller.
A layered structure can acquire the static electric

charge due to natural depletion of carriers (due to a lower
density of states in a layered structure, as compared with
the bulk material) or due to the external potential that
provides or drains carriers from the structure; the static
charge density is therefore related to the carrier density.
A typical carrier density in graphene at room tempera-
tures is ∼ 1016 m−2 [46, 47] (i.e. one carrier per ≈ 3.8×

103 atoms of carbon), which implies that a typical surface
charge density is σ0 = 1016e0/m

2 = 1.6 × 10−3 C m−2.
The maximum observed carrier densities (both electrons
or holes) in graphene are as high as ≈ 4× 1018 m−2 [48]
(i.e. one carrier per ∼ 10 atoms of carbon∗∗∗), which im-
plies a possibility of reaching the surface charge density
of σmax = 4× 1018 e0/m

2 = 0.64 C m−2.

Fig. 4. The uniform surface charge density σ = Q/S
on two parallel plates, which results in the force or the
energy of interaction equal to the Casimir force or the
Casimir energy (σF continuous line or σE broken line,
respectively), shown as a function of separation a be-
tween both plates. The horizontal broken lines indicate
respectively (from the top): the high and a typical sur-
face charge density in graphene. The unit of σ is C/m2

and the unit of a is nm.

Figure 4 shows that if we stick with classical electro-
dynamics and the present (classical) SI de�nition of the
base electric unit, the static electric measurements could
be o� from the correct result by 2 orders of magnitude
(at a = 1 nm, in the case of a typical value σ0 of the
�real� surface charge density); the systematic relative er-
ror associated with the Casimir interaction decreases to
∼ 10−3 at a on the order of a few hundred nanometers
(microstructure level) and approaches ∼ 10−8 for ∼ 0.1
millimetre-sized structures (log a ≈ 5).

3.3. The Casimir-equivalent classical voltage

The Casimir force F or the Casimir energy E can be
compared with the (classical) force FU (see Eq. (A5)) or
the (classical) energy EU (see Eq. (A6)) of interaction
between two parallel, �at, conducting surfaces of poten-
tial di�erence U . The comparisons yield the Casimir-
-equivalent, classical voltage UF :

UF =

√
πhc

240ε0a2
(8)

and UE

UE =

√
πhc

720ε0a2
, (9)

respectively, each of which can be interpreted as a mea-
sure of the magnitude of quantum �uctuations of voltage

∗∗∗The high charge-storage capability of graphene makes it a
prospective material for construction of powerful capacitors.
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Fig. 5. The magnitude of the Casimir-equivalent, clas-
sical voltage U between two parallel, �at, conducting
surfaces, which results from the Casimir force (UF , con-
tinuous line) or the Casimir energy (UE , broken line),
shown as a function of separation a between both sur-
faces. The horizontal broken line shows the reference
bias voltage U0 = 1 V, which is typical in nanostruc-
tures. The units of U and a are V and nm, respectively.

in the structure. The dependence of UF and UE on the
size parameter a is shown in Fig. 5.
The ratio of the Casimir-equivalent, classical voltage

to the external voltage actually applied to a layered
structure quanti�es the (relative) discrepancy that re-
sults from the classical approach in a situation where
quantum �uctuations can occur. The lower the ratio,
the better for validity of the classical approach.
A typical bias voltage in layered nanostructures is on

the order of U0 = 1 V, because resonant properties of
nanostructures fade away at high biases (see e.g. Fig. 7
in [10]) and because problems with heat dissipation could
result in increased temperature of the device, which fa-
cilitates electromigration; we shall assume U0 as a con-
stant reference quantity, although the bias voltage may
be much higher in larger structures. Figure 5 shows that
if the classical de�nitions and notions were scaled down
to 1 nm, it would have resulted in discrepancies as high
as 1 order of magnitude; at a ∼ 10 µm the discrepancy
would have dropped to 10−3, and at a ≈ 1 mm the di-
vergence would have been ∼ 10−5.

3.4. The Casimir-equivalent classical electric �eld

Having compared the Casimir force F or the Casimir
energy E with the classical force FE (see Eq. (A7)) or the
classical energy EE (see Eq. (A8)) of interaction between
two parallel, �at, uniformly charged surfaces, one obtains
the magnitude of the Casimir-equivalent, classical electric
�eld E:

|EF | =
√

πhc

240ε0a4
(10)

and

|EE | =
√

πhc

720ε0a4
, (11)

respectively. Since the time averaged value of quantum
�uctuations of the electric �eld E is zero, the Casimir-
-equivalent �eld |E| should be understood as an estimate

of the RMS value of the �uctuating �eld. The magnitude
of the Casimir-equivalent electric �eld is shown in Fig. 6.

Fig. 6. The magnitude of the Casimir-equivalent clas-
sical electric �eld |E| between two parallel, �at, charged
surfaces, which results from the Casimir force (|EF |,
continuous line) or the Casimir energy (|EE |, broken
line), shown as a function of separation a between both
surfaces. The horizontal broken line shows the refer-
ence value E0 = 0.1 V/nm, which is typical in nano-
structures. The units of |E| and a are V/nm and nm,
respectively.

The ratio of the Casimir-equivalent, classical electric
�eld to the strength of the real (i.e. physical) external
electric �eld applied to a layered structure is a measure
of the (relative) discrepancy associated with the classical
treatment of such a system. The lower the ratio, the
better for validity of the classical approach and for using
the SI-traceable electric units.
For the sake of the argument, we shall assume that

the external �eld strength is |E0| = 0.1 V/nm, which is
typical in nanostructures. Figure 6 shows that quantum
�uctuations of the electric �eld are higher than the typi-
cal external �eld for a ≤ 10 nm; the ratio of the Casimir-
-equivalent �eld to the external �eld drops to 10−3 at
a ≈ 0.4 µm and falls further to 10−8 at a ≈ 0.1 mm.

4. Summary: the role of quantum �uctuations

in the SI-traceable electric measurements

in layered structures

The Casimir-equivalent quantities are classical electric
quantities that produce the same force or energy of in-
teraction as the quantum Casimir e�ect†††. The Casimir-
-equivalent quantities gauge the magnitude of the QED
e�ects in layered structures and provide a measure of the
QED contributions to the systematic error � if the raw
measurement data (e.g. displacements in electromechan-
ical instruments) were interpreted in classical terms for
the sake of coherence with classical realizations of the SI
electric units. The Table summarizes the order of magni-
tude of these size-dependent, quantum contributions to
the relative systematic error that would have occurred
if one insisted on the consistently classical approach and
the SI-traceability of electric measurements.
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TABLE

Contribution of the Casimir e�ect to the relative systematic error in measurements of electric
quantities in layered structures of various sizes, if the raw data were interpreted within the classical
framework of the SI electric units.

Quantity
Reference
value

Relative
systematic

error
a = 1 nm a = 1 µm a = 1 mm

surface
current

I0 = 1 µA/nm
IF /I0
IE/I0

4.5× 104

2.6× 104
4.5× 10−2

2.6× 10−2

4.5× 10−8

2.6× 10−8

surface
charge

σ0 = 1.6× 10−3 C m−2 σF /σ0

σE/σ0

9.5× 101

5.5× 101
9.5× 10−5

5.5× 10−5

9.5× 10−11

5.5× 10−11

bias
voltage

U0 = 1 V
UF /U0

UE/U0

1.7× 101

1.0× 101
1.7× 10−2

1.0× 10−2

1.7× 10−5

1.0× 10−5

RMS
E-�eld

E0 = 0.1 V/nm
EF /E0

EE/E0

1.7× 102

1.0× 102
1.7× 10−4

1.0× 10−4

1.7× 10−10

1.0× 10−10

The reference values for the �rst two quantities (the
surface current I0 and the surface charge σ0) are typi-
cal of graphene, whereas the reference values for the bias
voltage U0 (across the layered structure) and the elec-
tric �eld E0 (in between the layers) are typical of �con-
ventional� layered nanostructures. The relatively large
contribution of quantum e�ects to the bias voltage in a
macroscopic structure (∼ 10−5 for a = 1 mm) is obvi-
ously the consequence of using the same reference value
U0 = 1 V for all layered structures, whereas the typical
voltage in macroscopic systems can be a few orders of
magnitude higher (e.g. 103 ÷ 105 V in capacitors).
The magnitude of relative errors listed in Table vali-

dates neglecting the QED e�ects in analyses of measure-
ment principles of macroscopic electromechanical instru-
ments, whereas working principles of NEMS have to be
analysed at the QED level, as expected. The general
inference is that the classical SI de�nition of the am-
pere does not �t the needs of electric measurements in
nanoscopic structures.
The intermediate range of the MEMS is a �grey area�,

where the situation has to be evaluated individually, de-
pending on a particular device, the quantity to be mea-
sured and the required accuracy.

5. Discussion and conclusion

Maxwell's equations give a closed expression for the
force of interaction between two straight, parallel wires
of in�nite length, separated by a distance L in vacuum,
which carry direct currents. If magnitudes of both cur-
rents are equal to I, the force F exerted on a unit length
of the wire is

F =
µ0I

2

2πL
. (12)

This expression is the basis for the 1948 de�nition of
the ampere, which formally still stays in force: having
assumed a certain value of the magnetic constant (per-
meability), µ0 = 4π × 10−7 V s A−1 m−1, the unit of

current is de�ned by the magnitude of the force of inter-
action that results from Eq. (12), F = 2× 10−7 N m−1.
The de�nitional force F scales as the square of the current
I and the inverse of the distance parameter L. However,
in situations where quantum e�ects become signi�cant,
the scaling breaks down and the classical electromagnetic
de�nition of the ampere fails. This causes the incoher-
ence problem in the contemporary electric metrology: (1)
If electric measurements are traceable to the SI units, the
system fails at the nanoscale for fundamental physical
reasons, and not just for insu�cient accuracy or stability
of classical realizations of the ampere or other electric
units, as compared with quantum standards; (2) if the
quantum approach and primary quantum standards are
used, the measurements are not SI-traceable.

The classical electromagnetic de�nition of the ampere
explicitly invokes a physical phenomenon, which (from
the modern point of view) should actually be the domain
of the mise en pratique of the unit, rather than occur in
the de�nition. The magnetic constant µ0 is not explicitly
mentioned in the classical de�nition of the ampere; its
value is only implicitly assumed and associated with a
certain (classical) theory of the electromagnetic �eld via
the numerical value of the force of interaction that is
cited in the de�nition. That approach makes the ampere
dependent on the assumed theory of the electromagnetic
�eld. With the advent of the QED, the magnitude of the
base electric unit is not uniquely de�ned: the value of the
ampere depends on the choice of the classical or quantum
approach at a given scale of the considered system.

On the other hand, the New SI approach to de�ning
base units is entirely di�erent: the units are going to be
de�ned by explicitly �xing the numerical values of phys-
ical constants, without any reference to physical theories
and physical laws; those references are to be shifted to
the mise en pratique of the units, i.e. to descriptions of
the recommended methods for realization of the units.
By �xing the value of a physical constant, we impose a
constraint that determines one unknown, which � in this
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particular case � is the value of a unit; this new approach
does not require making a prior commitment as to the
kind of a relationship (i.e. the kind of a phenomenon‡‡‡

or a physical law that is employed in the mise en pratique
of the unit), which links the physical constant with the
primary realization of the unit.
The choice of a physical constant that is employed to

de�ne a base unit is usually not unique. In the case of
the base electric unit, one might de�ne the ampere by
explicitly �xing the value of the magnetic constant µ0,
the electric constant ε0, the traditional expression for
the electromagnetic coupling constant kE = 1/(4πε0),
the �ne structure constant α, or the elementary charge
e [5]. The New SI ampere will be de�ned in terms of the
elementary charge, because the �xed value of e (together
with the Planck constant h, �xed in the New SI de�nition
of the kilogram) allows to determine the exact values of
the von Klitzing constant RK = h/e2 and the Joseph-
son constant KJ = 2e/h, that play the fundamental role
in realization of electric units by means of the primary
quantum standards of the ohm and the volt, respectively.
Rede�nition of the base electric unit in terms of the

�xed numerical value of the elementary charge will solve
the problem of incompatibility of the classical de�nition
of the ampere with quantum physics. The abstract de�-
nitions of the New SI base units are not only consistent
with the present state of knowledge, but also immune to
emergence of new physical theories and to the technolog-
ical progress, because all references to physical laws, to
speci�c physical phenomena, or to particular methods of
realization of the (rede�ned) units will be shifted to their
mises en pratique, which can be adjusted as necessary,
without a�ecting the base de�nitions.
The electric metrology of nanostructures (carbon

nanostructures in particular) has become especially im-
portant to the electronics industry in recent years. It is
highly desirable that this emerging new �eld of metrol-
ogy be developed in a situation free from bifurcation be-
tween the o�cial, classical de�nition of the base electric
unit and the laboratory practice, where the position of
quantum standards is unchallenged.
Metrology has to keep pace with the needs of science

and industry, and this calls for a prompt decision on the
rede�nition of the SI units. However, successful imple-
mentation of the New SI is contingent on: (1) achieving
prior consensus on particular formulations of the New
SI de�nitions of base units [49, 50]; and (2) gaining a
widespread support for the reform, which requires much
more information about the program directed not only
to the professional measurement community, but also to
other SI users and to the general public, i.e. taxpayers

‡‡‡The notable exceptions are the second (associated with a spe-
ci�c hyper�ne transition spectral line) and the candela (associated
with the black-body radiation law), which are not going to be re-
de�ned in the New SI; instead, de�nitions of these units will be
rephrased.

who will foot the bill for the upcoming changes in the
international system of units. The annual World Metrol-
ogy Day could provide an e�ective forum to publicize the
idea of the New SI.

Appendix: Interaction between surface currents

or surface charges in classical electrodynamics

Consider two �at, parallel, conducting plates, sepa-
rated by a distance a. Let each of the plates carry the
same uniform surface current density I. The force of in-
teraction FI between the two currents is

FI =
µ0I

2

2
(A1)

and the energy of interaction EI is

EI =
aµ0I

2

2
. (A2)

If two �at, parallel plates carry the same uniform sur-
face charge density σ, the force of the electrostatic inter-
action Fσ between the two surface charges is

Fσ =
σ2

2ε0
(A3)

and the energy of the interaction Eσ is

Eσ =
aσ2

2ε0
. (A4)

Let the potential di�erence between two �at, parallel
plates be U . The force of the electrostatic interaction FU
is

FU =
ε0U

2

2a2
(A5)

and the potential energy EU is

EU =
ε0U

2

2a
, (A6)

which can be expressed in terms of the uniform electric
�eld E between the two plates as

FE =
ε0E

2

2
(A7)

and

EE =
aε0E

2

2
, (A8)

respectively. The relations (A1)�(A8) give forces and en-
ergies per unit surface.
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