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We analyze composed quantum systems consisting of k subsystems, each described by states in the
n-dimensional Hilbert space. Interaction between subsystems can be represented by a graph, with vertices corre-
sponding to individual subsystems and edges denoting a generic interaction, modeled by random unitary matrices
of order n2. The global evolution operator is represented by a unitary matrix of size N = nk. We investigate statis-
tical properties of such matrices and show that they display spectral properties characteristic to the Haar random
unitary matrices provided the corresponding graph is connected. Thus basing on random unitary matrices of a
small size n2 one can construct a fair approximation of large random unitary matrices of size nk. Graph-structured
random unitary matrices investigated here allow one to de�ne the corresponding structured ensembles of random
pure states.
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1. Introduction

Random unitary matrices can be applied to describe
quantum chaotic scattering or an evolution operator for a
periodic, time-dependent system, the corresponding clas-
sical dynamics is chaotic in the entire phase space [1]. If
the system possesses no time-reversal symmetry, the cor-
responding operators display statistical properties typi-
cal to circular unitary ensemble (CUE) of matrices dis-
tributed according to the Haar measure on the unitary
group [2].
A random matrix typical to CUE is hence related to a

common physical situation, in which there exist a generic,
possibly unspeci�ed, interaction between any two levels
of the entire system. In a more general setup of a multi-
-partite system this assumption corresponds thus to a
typical interaction between any pair of subsystems.
On the other hand, in a broad class of quantum mod-

els studied in condensed matter or atomic physics the
interaction acts only locally between neighbouring par-
ticles on a prescribed lattice. If the exact Hamiltonian
describing such an interaction is unknown, one can mimic
it by a random unitary matrix which couples only a few
selected subsystems. In this way we arrive at a model
of random unitary matrices associated to a graph or a
network, which will be introduced and analyzed in this
work.
The model described precisely in the next section, is re-

lated to the ensemble of structured quantum pure states
associated with a graph investigated in [3, 4]. These as-
sumptions di�er signi�cantly from the model analyzed
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in [5], in which edges of the graph represent maximally
entangled states of two qubits, while the vertices repre-
sent deterministic local unitary gates or local measure-
ments. A similar idea of an edge representing a maxi-
mally entangled state of two particles was also used in
a deterministic construction of projected entangled pair
states [6], while more general models of quantum net-
works were analyzed in [7, 8].

We extend here the model introduced in [3] of a ran-
dom unitary interaction represented by each vertex of the
graph, but make the model symmetric, by assuming that
in the subsequent time step a similar random interaction
takes place along each bond of the graph. Thus the phys-
ical role of bonds and edges of a graph is in sense similar,
in an analogy to the construction of line-graphs [9].

The main aim of this work is to introduce ensembles
of structured random unitary matrices associated to a
graph and to investigate their basic properties. We report
here a key observation concerning the spectral statistics
of such structured unitary matrices. On the one hand,
ensembles of matrices related to non-connected graphs
display Poisson-like spectra. On the other hand, a typical
connected graph leads to an ensemble with several prop-
erties characteristic to CUE, even though the interaction
takes place locally between the subsystems connected by
a bond or belonging to a single vertex of a graph.

The paper is organised as follows. In the next section
two alternative versions of the scheme associating a ran-
dom unitary matrix to a graph are described. Statisti-
cal properties of spectra of random matrices correspond-
ing to exemplary graphs are analyzed in Sect. 3. The
distribution of eigenvectors of graph unitary matrices is
analyzed in Sect. 4, while statistical properties of their
entries are discussed in Sect. 5. Concluding remarks are
presented in Sect. 6, while some details concerning the
numerical computations are provided in Appendix.
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2. Interactions associated to a graph

and corresponding unitary matrices

We are going to discuss a general case of a composite
quantum system consisting of an arbitrary number k of
subsystems isolated from the environment. For simplic-
ity we shall assume here that each subsystem is described
in an n-dimensional Hilbert space, Hn. Hence the total
dimension of the Hilbert space reads N = nk and the
composite system is described by a state |ψ〉 in the com-
posite Hilbert space HN = Hn ⊗ · · · ⊗ Hn.
A Hamiltonian evolution operator can be represented

by a global unitary matrix U of order N . Assume �rst
that the time evolution of the composite system can be
decomposed into two time steps, so the time evolution is
given by a product of two matrices

U =WV. (1)

Here W and V denote unitary matrices, which describe
both phases of the time evolution, which occurs sequen-
tially, one after another.
The main assumption of the model is that the physical

interactions taking place between certain subsystems has
a topology which can be described by a graph. To make
the presentation more complete we shall de�ne two dif-
ferent schemes of representing the interaction by a graph.
Although some interaction patterns can be described
equally well using any one of the two constructions pro-
posed, in some cases only one of these two schemes is
applicable, which provides a motivation to describe both
of them.

2.1. A bond of a graph represents
two coupled subsystems

In the �rst approach we will assume that the total
number of subsystems is even k = 2m and the interaction
can be represented by an undirected graph Γ1 consisting
of m bonds and v vertices. In general, the graph needs
not to be connected and we may allow loops and multiple
connections between vertices.
In the �rst time step of the evolution a generic in-

teraction takes place independently in each vertex of the
graph. Such an interaction is described by a random uni-
tary operator V (j), where j = 1, . . . , v labels the vertices
of the graph. For instance, if the �rst vertex couples the
subsystems labeled by 2 and 3 we shall write V (1) = V2,3.
The interaction in all vertices is thus described by a ten-
sor product

V = V (1) ⊗ V (2) ⊗ . . .⊗ V (v). (2)

Each bond of a graph represents two subsystems inter-
acting jointly in the second time step. For instance, the
�rst bond, connecting subsystems labeled by 1 and 2, will
denote a generic interaction between them represented
by a random unitary matrix W12 of order n

2. Hence the
second time step is described by a unitary matrix of the
product form

W =W1,2 ⊗W3,4 ⊗ . . .⊗Wk−1,k, (3)

where W2j−1,2j describes a generic bi-partite interaction

corresponding to j-th bond of the graph. Hence the en-
tire, two-step time evolution reads U = WV , according
to (1), where both unitary terms W and V have a tensor
product structure. Observe that the tensor product sym-
bols ⊗ present in (2) are taken with respect to di�erent
partitions of the total Hilbert space as these occurring in
Eq. (3), so in general the operator U does not possess a
tensor product structure.
To watch this construction in action consider a sim-

ple graph consisting of two vertices, v = 2 and two
bonds between them, m = 2. This graph describes thus
k = 2m = 4 subsystems, which are labeled here by 1, 2,
3, 4 � see Fig. 1. The evolution operator constructed
according to the rules (1, 2, 3) reads thus

U = (W1,2 ⊗W3,4)
(
V2,3⊗̃V1,4

)
, (4)

where the interaction along the bonds is given by random
unitary matrices W1,2 and W3,4 of size n

2, while interac-
tion at the vertices is described by unitary matrices V2,3
and V1,4 of the same size. It is convenient to label unitary
matrices V , describing interaction at a given vertex by
its number, written in a superscript in brackets or by the
numbers of particle it includes placed in a subscript, and
freely switch between both conventions. In the example
described above one has V (1) = V2,3 and V

(2) = V1,4.

Fig. 1. (a) An exemplary graph with two vertices and
two bonds describes a 4-party system, (b) construction
of the corresponding random unitary matrix U de�ned
by Eq. (4); (c) the same interaction described by Eq. (5)
and represented by a two-color graph � one color is
represented by solid (red) lines and the other by dashed
(black) lines.

The sign tilde over the second tensor product in Eq. (4)
is put to emphasize that both tensor products are taken
with respect to di�erent partitions, so U cannot be writ-
ten as a tensor product of two local unitary matrices.

2.2. A vertex of a two-color graph
represents a subsystem

In the second approach each of v vertices of the graph
describes a single subsystem, hence the number of par-
ties involved k = v is arbitrary. On the other hand, in
this scheme we need to make some restrictions concern-
ing the topology of the graph representing the interac-
tion. To describe physical interaction occurring in two
moments of time we will use two kinds of bonds, denoted
in the graph by two di�erent colours. This construction
is unambiguous provided the two-colour graph Γ2 con-
sidered here satis�es the following property: there exists
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a single bond of each colour linked to a given vertex (see
Fig. 2b�e), or if there are more of them (for example �
two red, solid bonds entering vertex 1 in Fig. 2f), they
are a part of a maximally connected (sub)graph of this
colour (a triangle in this �gure).

Fig. 2. Examples of two-colour interaction graphs, rep-
resenting due to Eq. (5) di�erent evolution operators:
(a) U = V1 ∈ U(n), (b) U = W12(V1 ⊗ V2) ∈
U(n2), (c) U = (W12 ⊗ W3)(V1 ⊗ V23) ∈ U(n3), (d)
U = (W12 ⊗ W34)(V13 ⊗ V24) ∈ U(n4), (e) U =
(W12 ⊗ W34 ⊗ W56)(V23 ⊗ V45 ⊗ V61) ∈ U(n6), (f)
U = (W123 ⊗W4 ⊗W5 ⊗W6)(V14 ⊗ V25 ⊗ V36) ∈ U(n6).
Graphs (a) and (b) represent structureless (CUE) matri-
ces, while graphs (c)�(f) correspond to structured ma-
trices.

To present a formal de�nition of this property we will
use notation of the graph theory. A clique in the graph
is de�ned as a subset of vertices connected to each other.
Let Q = {qi}ki=1 denotes the set of vertices of the graph.
A partition of the set Q, given by any set of its mutually
exclusive and collectively exhaustive subsets is denoted
by Π (Q). Our requirement concerning the graph Γ2 is
then equivalent to an assumption that its vertices can
be divided into two partitions, Π1(Q) and Π2(Q), both
of which consist of separate cliques only. Each partition
is represented on the graph by bonds of a certain color.
Hence we introduce two sets of bonds, B1 and B2, and
represent the evolution operator by two graphs of inter-
actions, G1 = {Q,B1} and G2 = {Q,B2}.
The unitary operator U of the entire system, describing

the two-step time evolution, can be therefore expressed
as

U =

 ⊗
π∈Π2(Q)

Wπ

(⊗̃
π∈Π1(Q)

Vπ

)
, (5)

where operator Vπ (orWπ) acts on the particles from the
subset π, and the tilde over the sign ⊗ in the second term
is used to emphasize that the tensor products are taken
with respect to di�erent partitions. The size of a compo-
nent unitary matrix Vπ is a function of the number #π
of the particles in the subset π as dimVπ = n#π. Note
that the operator (5) is now uniquely determined by a
two-color graph Γ2 = {Q, {B1, B2}} (consisting of a set
of vertices and two sets of edges).
Some examples of the two-colour graphs satisfying the

cliques assumption and representing evolution operators
are shown in Fig. 2. The interactions are represented by
either black dashed or red solid edges. Observe that the
system represented by the graph Fig. 2d was already de-
scribed by the former construction and shown in Fig. 1.
On the other hand, the former approach, in which each

bond represents two subsystems, is not applicable for the
system visualised in Fig. 2c which consists of an odd num-
ber of subsystems.
It is straightforward to generalize the above construc-

tion for three (or more) steps of the time evolution, which
is determined by a graph consisting of three (or more)
classes of bonds.

3. Spectral properties of graph-structured

matrices

Eigenvalues of a unitary matrix of order N lie on the
unit circle in the complex plane, so they have the form
zj = e iθj for j = 1, . . . , N . One can thus consider the
probability density of the eigenphases, P (θ), which is
known to be uniform in [0, 2π) for random matrices of
circular ensembles [2].
Diagonalisation of a unitary matrix U of orderN yields

N eigenphases. After they are sorted, θ1 ≤ θ2 ≤ · · · ≤
θN , one may consider the normalized nearest neighbour
spacing,

Si =
N

2π
(θi+1 − θi). (6)

Each circular ensemble of random matrices (Poisson, or-
thogonal, unitary and symplectic) is characterized by the
speci�c level spacing distribution P (S). In the case of the
unitary ensemble (CUE), equivalent to the Haar measure
on the unitary group, one can use the Wigner surmise

P (S) =
32

π2
S2 exp

(
− 4

π
S2

)
, (7)

which is exact for random unitary matrices of order 2
and gives a good approximation [2] also for large matri-
ces, N →∞.
We were examining the spectral properties of various

graph-structured matrices, built of smaller CUE matri-
ces, which describe the interaction along the bonds or in
the vertices. For simplicity we will focus our attention
here on systems which can be represented by two-color
graphs de�ned in Sect. 2.2, and will use the graphical
convention described in that section. We constructed
numerically ensembles of structured random unitary ma-
trices corresponding to graphs presented in Fig. 3. Ran-
dom unitary matrices [10] used as building blocks of the
construction presented were obtained by the algorithm
of Mezzadri [11] � some details concerning the numer-
ical procedure are provided in Appendix. In all cases
studied the level density P (θ) distribution is uniform,
which is the case for standard ensembles of random uni-
tary matrices.
Regarding the structure of the graph‡, we distinguish

two cases:

‡When we refer to (dis)connectivity of a graph, we disregard the
fact that we actually have two (or more) di�erent sets of bonds Bi.
So in fact we are interested in the problem of connectivity of the
graph Γ = (Q,∪iBi), where all the sets of bonds corresponding to
the di�erent stages of interactions have been summed.
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Fig. 3. Nearest level spacing statistics P (S) for the
unitary matrices corresponding to the graphs shown
in the inset. For a disconnected graph (a) the matri-
ces U display Poissonian spectra, while for connected
graphs (b)�(f) the level spacing distribution is described
by the Wigner distribution (7) characteristic of CUE.
The matrix size N reads (a) N = 256, (b) N = 100,
(c) N = 1000, (d) N = 2401, (e) N = 729, (f) N = 64.
In each case, the number of generated eigenvalues was
of the order of 105.

• The graph is disconnected. In this case the matrix
U can be written as the Kronecker (tensor) product
of two or more smaller matrices. The resulting level
spacing distribution is similar to Poissonian ensem-
ble, for which the eigenvalues are uncorrelated.

• The graph is connected. Our numerical results
show that several properties of the structured uni-
tary matrices corresponding to connected graphs
are similar to those of random structureless matri-
ces. In particular, if all the component matricesWπ

and Vπ are taken according to CUE, the structured
evolution matrix U de�ned in Eq. (5) displays spec-
tral properties characteristic to the Haar measure
on U(N) with N = nk. Figure 3 presents spacing
distributions P (S) obtained for the matrices deter-
mined by exemplary graphs shown in each �gure.

It is possible to relate these observations with recent
results on tensor products of random unitary matrices,
which display Poissonian level spacing in the limit of
large matrices [12�14]. Asymptotically both tensor prod-
uct factors, W = ⊗Wπ1 and V = ⊗Vπ2 in Eq. (5) display
thus a Poissonian spectra, so the evolution operator rep-
resented in the eigenbasis of the �rst term has the form
Y †UY = P1XP2X

†. Here P1 and P2 denote diagonal
unitary matrices with Poissonian spectra of W and V ,
respectively. The unitary matrices Y and X are deter-
mined by eigenvectors of W and V .
Note that unitary rotation matrix Y does not in�uence

the spectrum of U . In the case of a connected graph the
tensor products de�ningW and V are taken with respect
to di�erent partitions, hence it is possible to assume that
the rotation matrixX constructed out of eigenvectors has
a CUE like properties [1]. Hence we arrive at a composed
ensemble of matrices [15], of the form U ′ = P1XP2X

†,
which contains a product of two diagonal matrices repre-

sented in di�erent (random) bases. Although both matri-
ces P1 and P2 possess Poissonian level spacing distribu-
tions, the composed ensemble displays CUE-like spectra,
which explains the results obtained for matrices struc-
tured by connected graphs. We performed numerical in-
vestigation for unitary matrices of size N = 100 of this
composed ensemble and found that level spacing distri-
bution of U ′ �ts well to predictions of random matrices.

In the case of disconnected graph the both terms
W and V in Eq. (5) have a tensor product structure
with respect to the same partition, for instance U =
(W ⊗W ′)(V ⊗ V ′) = WV ⊗W ′V ′. Thus the evolution
operator U has a tensor product form, so its level spac-
ing distribution becomes asymptotically Poissonian [12],
which explains properties of matrices structured by dis-
connected graphs.

The above arguments work asymptotically for evolu-
tion operators describing the interaction represented by
two-colour connected graphs, such that each vertex con-
tains at least one connection of each colour. To analyze
to what extent this assumption can be relaxed we inves-
tigated an L step interaction, described by a larger class
of graphs with bonds of L di�erent colours. In the sim-
plest case, consider a chain of L + 1 subsystems, such
that in each moment only two neighbouring subsystems
are involved: in the �rst step the �rst subsystem inter-
acts with the second, in the second step the interaction
couples subsystems two and three, and so on.

Fig. 4. Level spacing distribution P (S) for unitary ma-
trices U corresponding to a �ve-step evolution of a six-
-chain consisting of (a) six qubits, n = 2 and (b) six
qutrits, n = 3. The sample size is (a) 20000 and (b) 400
matrices. In the i-th step of the evolution only i-th and
(i+ 1)-th subsystem interact so U is given by Eq. (8).

This interaction can be represented by a chain of L+1
vertices, such that all L bounds between the neighbour-
ing vertices are of a di�erent colour, associated with the
interaction in speci�c time steps. Figure 4 shows the level
spacing distribution for such a model with L = 5 time
steps,

U =WVXY Z = (W12 ⊗W3 ⊗W4 ⊗W5 ⊗W6)

. . . (Z1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ Z56). (8)

In the case of six qubit system (n = 2 � see Fig. 4a)
some deviations from the CUE results are visible, while
in the case of six qutrits (n = 3, Fig. 4b) the distribu-
tion follows predictions of random matrices with a good
accuracy. Hence Wigner-like spectral properties of the
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evolution operator can be obtained under very weak as-
sumptions on the interaction, as the �rst and the last
subsystems are coupled only indirectly by the L-step in-
teraction.

4. Eigenvectors of graph-structured

unitary matrices

Matrices of eigenvectors of random unitary matrices
are known to be distributed according to the Haar mea-
sure on the unitary group [2]. It is interesting to analyze
statistical properties of eigenvectors of unitary matrices
associated with a given graph and compare them with
predictions for random matrices.
Let us write the eigenequation of a unitary matrix

as U |χj〉 = e iϑj |χj〉. The eigenstates are normalized
〈χj |χj〉 = 1 for j = 1, . . . , N , so the complex expansion
coe�cients χji of the state |χj〉 in the computational ba-

sis satisfy
∑N
i=1 |χji|2 = 1 for j = 1, . . . , N . These N

non-negative numbers form thus a probability vector, the
distribution of which can be characterized by its Shannon
entropy.

4.1. Eigenvector entropy

For any unitary matrix U one de�nes the eigenvector
entropy as the average Shannon entropy of a single eigen-
vector:

Hev(U) ≡ − 1

N

∑
i,j

|χji|2 log |χji|2. (9)

Let us note that this quantity coincides with the entropy
of the unistochastic matrix [16] corresponding to the uni-
tary matrix of eigenvectors of U . The mean entropy of
eigenvector or a random unitary matrix of order N , coin-
cides with the mean entropy of a random complex vector
[17, 18]:

〈Hel〉 = ψ(N + 1)− ψ(2) =
N∑
j=2

1

j
. (10)

Here ψ(x) denotes the digamma function, d lnΓ (x)/dx.
A comparison of the distribution of eigenvector entropy

for graph-structured and unstructured random unitary
matrices is presented in Fig. 5. Our numerical investi-
gations show that statistical properties of eigenvectors of
unitary matrices associated to connected graphs coincide
for large dimensions with the prediction of random CUE
matrices.

4.2. Entropy and purity of a reduced state

A unitary matrix U associated to a graph acts on the
Hilbert space with a tensor product structure and corre-
sponds to composed systems. Let us divide the system
into two parts, labeled by A and B. The eigenvectors
|χ〉 of U can be considered as pure states of a bi-partite
system AB. One can thus investigate their entanglement
entropy with respect to the partition A�B, equal to the
von Neumann entropy H(σ) = −Trσ lnσ of the reduced
state, σA = TrB |χ〉〈χ|.

Fig. 5. Distribution of eigenvector entropy P (Hev(U))
for unitary matrices U associated to (a) a chain consist-
ing of 4 subsystems, U = WV = (W12⊗W34)(V1⊗V23⊗
V4) realized for n = 4, sample size 20000 (green) and the
corresponding three-step evolution (blue) and (b) six-
-particle chain with a two-step local interaction given by
Eq. (8) obtained for n = 3, sample size 50000 (green),
and its �ve-step generalization (blue). The larger di-
mension n of a single system, the better agreement with
the CUE data (red) obtained for the same total dimen-
sion N .

For random vectors of the size NANB the average en-
tropy of a subsystem of dimension NA reads [19, 20]:

〈H〉 ≈ logNA −
NA − 1

2NB
. (11)

Here it is assumed that the dimension NA of the reduced
state is large and NB ≥ NA so that the maximal entropy
Hmax is equal to logNA. If both subsystems are equal
NB = NA =

√
N , the reduced states σA are distributed

uniformly according to the Hilbert�Schmidt measure in
the set of mixed quantum states and the average entropy
is 〈H〉HS ≈ 1

2 logN −
1
2 . By de�nition it is equal to the

average entanglement entropy of random pure states of
size N = N2

A.
In order to provide an alternative characterization of

degree of mixing of a quantum state one often uses pu-
rity, Trσ2, equal to unity for a pure state. This quantity
applied to a reduced state σA = TrB |χ〉〈χ|, carries in-
formation about entanglement of a bi-partite state |χ〉.
For pure random states of size N = NANB the average
purity is [21, 18]:

〈R〉 = NA +NB
NANB + 1

.

Average entanglement entropy of eigenvectors of ran-
dom unitary matrices associated to exemplary graphs are
shown in Fig. 6 and Fig. 7 while the average purity is
presented in Fig. 8b. In the case of connected graphs
the entropy of entanglement and purity of the reduced
eigenvectors of associated unitary matrices coincide thus
with properties of random vectors described by random
matrices.

4.3. Projection to a smaller subspace

As eigenvectors |χ〉 of U denote pure states of a multi-
partite systems, it is of interest to investigate properties
of their projections onto a smaller subspace. We have
performed such a procedure for a system of three parti-
cles (see Fig. 2c), with unequal dimensions of the sub-
spaces, NA = NC 6= NB . After choosing one of the basis
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Fig. 6. Mean entanglement entropy 〈H〉 of the eigen-
vectors of a structured unitary matrix U , versus its
size N . The red triangles denote the system of two
particles, Fig. 2b, and the green circles � four parti-
cles, Fig. 2d. In all the cases the dimensions of the two
subsystems A and B are equal, NA = NB =

√
N . The

solid line follows from the prediction for CUE matrices
(Eq. (11), with NA = NB =

√
N).

Fig. 7. Linear chains of subsystems of length k =
3, 4, 5, 6. (a) Average entropy 〈H〉 of the subsystem con-
sisting of two peripheral particles, versus the dimension
n of the Hilbert space of a single particle (symbols) and
predictions of random matrices following from (11) �
lines. (b) Comparison with the non-structured random
unitary matrices of order N = nk.

vectors |iB〉 of HB , the eigenstates |ΨABC〉 = |χ〉 were
projected onto the subspace HA ⊗HC ,
|Ψ̃AC〉 ≡ 〈iB |ΨABC〉. (12)

Average entanglement between particles A and C was
characterized by the purity and the von-Neumann en-
tropy of the reduced state σA = TrC |Ψ̃AC〉〈Ψ̃AC |. The
averaging is performed over all NB basis vectors in the
Hilbert space HB as well as over several realizations of

Fig. 8. Properties of eigenvectors of matrices associ-
ated to a three-chain projected onto a single subspace
as in Eq. (12) as a function of its dimension n = NA:
(a) mean entropy 〈H〉 and (b) mean purity 〈R〉 com-
pared with predictions of random matrices.

the corresponding random matrix.
Interestingly, entanglement between the peripheral

particles does not depend on the dimension of the central
particle, which acts as a proxy of interactions. As shown
in Fig. 8, entropy and purity of the projected eigenvectors
exhibit the CUE-like behavior.

5. Distribution of matrix elements

Although unitary matrices related to connected graphs
display statistical properties of spectra and eigenvectors
according to predictions of random matrices, the distri-
bution of their elements is di�erent. To describe quanti-
tatively the distribution of entries of U we use the element
entropy,

Hel(U) ≡ − 1

N

∑
ij

|uij |2 log |uij |2. (13)

For any unitary matrix with a tensor product structure
the element entropy is additive,

Hel(U ⊗ V ) = Hel(U) +Hel(V ). (14)

Fig. 9. Distribution of the element entropy Hel for ran-
dom matrices associated to a chain (such as in Fig. 2c;
red histogram), circle (such as in Fig. 2d or e; green)
and random CUE matrices (blue). Dimension of a sin-
gle subsystem is n = 2, while the number of particles is
(a) k = 4, (b) k = 6, (c) k = 8.

The distribution of the element entropy for random
matrices associated to exemplary connected graphs is
shown in Fig. 9. Any construction of a CUE matrix of or-
der N requires more independent random numbers than
to generate smaller matrices necessary to construct ma-
trices associated to a graph. Therefore the distribution of
the element entropy is narrower for CUE matrices than
for matrices associated to a graph and it allows one to
distinguish between structured and unstructured random
matrices.

6. Concluding remarks

We proposed a construction of random unitary matri-
ces which, interpreted as representations of the Hamilto-
nian evolution operators, correspond to various scenarios
of the interaction between quantum objects. The struc-
ture of such matrices can be determined by a graph in two
di�erent ways. In the �rst method each bond represents
two interacting subsystems, while the other phase of the
interaction couples all subsystems connected by a single
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vertex. In the alternative method the vertices represent
individual subsystems and the edges represent interac-
tion between them. In this work we focus on the case, in
which no details concerning the interaction Hamiltonian
are known, so the interaction is modeled by random uni-
tary matrices generated according to the Haar measure
on the unitary group.

Our numerical results support the conjecture that the
spectral properties of structured unitary matrices asso-
ciated to a connected graph are well described by pre-
dictions of CUE random matrices. This concerns the
level density P (θ), the nearest neighbour spacing distri-
bution P (S), and also statistical properties of eigenvec-
tors. On the other hand, the simplest method do distin-
guish between ensembles of structured unitary matrices
and CUE is to analyze statistics of their elements and
compare e.g. the element entropy.

Statistical properties of elements of random matrices
associated to a graph Γ are determined by its topology.
Analyzing statistics of the elements and the traces of uni-
tary matrices associated to two di�erent graphs in sev-
eral cases one can distinguish between these two graphs.
However, in general it seems not to be possible to de-
termine in this way, whether two investigated graphs are
isomorphic.

Making use of unitary random matrix associated to a
graph Γ one can act with it on a given separable pure
state and arrive at a random pure state, |Ψ〉 = U |1 ⊗
. . .⊗ 1〉. In this way one obtains an ensemble of random
states associated to a graph Γ , which can be considered
as a generalization of the ensembles investigated in [3, 4].
On the other hand, the above construction of an ensemble
of quantum states corresponding to a graph di�ers from
the notion of quantum graphs studied by Gnutzmann and
Smilansky [22] or these related to microwave experiments
investigated in [23, 24].

As the standard model discussed in this work corre-
sponds to a two-step interaction, represented by a two-
-colour graph, it can be generalized for an arbitrary num-
ber of L time steps, and the corresponding L-colour
graphs. It is worth to emphasize that even in the case
of the chain graphs, with local interaction coupling two
neighbouring sites only, CUE-like spectral properties are
observed for large system size provided the number of
the time steps L is su�ciently large. This means that
the randomness can be transferred by a stepwise nearest
neighbour interaction, from the �rst subsystem to the
last one.

Random unitary matrices play an important role in
various protocols of quantum information processing.
However, the number of quantum gates necessary to im-
plement a random unitary matrix grows exponentially
with the number of qubits [25]. As a substitute one
may construct various pseudorandom matrices, the sta-
tistical properties of which should be similar to these of
CUE [25�27].

The scheme of random unitary matrices associated
with a graph, developed in this work, can be thus directly

applied to construct large random unitary matrices out
of a few much smaller unitary matrices of order. Con-
sider for instance random matrices

U = VW =
(
V2,3 ⊗ V4,5 ⊗ · · · ⊗ Vk,1

)(
W1,2 ⊗W3,4

⊗ · · · ⊗Wk−1,k
)

(15)

associated with a two colour ring of k − 1 subsystems
interacting with one neighbour in phase one (bonds of
a �rst colour) and with the other on phase two (bonds
of the second colour). This natural extension of a six-
-partite system shown in Fig. 2e allows one to obtain
random unitary matrices of size N = nk out of k smaller
CUE matrices of size n2. As discussed in Appendix the
generation time of such graph-structured matrices can be
shorter compared to the standard CUE sampling.
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Appendix: Time costs of the matrix generation

The calculations were performed on two PCs, with pro-
cessors Intel(R) Core(TM)2 CPU T5500 @ 1.66 GHz and
Intel(R) Xeon(R) CPU X3430 @ 2.40 GHz. The com-
puter program was written in C++ and used the Ar-
madillo [28] linear algebra library. The sampling of CUE
was implemented according to the algorithm proposed by
Mezzadri [11], based on the QR decomposition. In a sin-
gle run, T matrices were generated and then diagonalized
to obtain the eigenvalues.

Fig. 10. Time costs of the matrix generation: line-
-structured system of n qubits, see Fig. 2b (red points)
vs. direct construction of random CUE matrices (blue
points).

As shown in Fig. 10 and Table, construction of random
matrices associated to a graph costs less time than the
corresponding CUE matrix obtained by the Mezzadri al-
gorithm. However, to investigate spectral properties of
a matrix obtained one needs to diagonalise it, and for



Random Unitary Matrices Associated to a Graph 1105

TABLE

Comparison of the time required to generate random matri-
ces associated to a square graph and obtained by a CUE
algorithm. Processor: Intel(R) Xeon(R) CPU X3430 @
2.40 GHz.

Matrix type # matrices Time [s] Rel. time [%]
CUE, N = 256 1000 85.93 100
square graph,
4 matrices
of size n = 4

1000 47.24 55.0

CUE, N = 625 100 100.27 100
square graph,
4 matrices
of size n = 5

100 62.26 62.1

a larger matrix size N the computing time needed to
construct a random matrix is dominated by the diago-
nalization time.
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