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We study the resonant tunneling e�ect in a many-body Wannier�Stark system, realized by ultracold bosonic
atoms in an optical lattice subjected to an external Stark force. The properties of the many-body system are
e�ectively described in terms of upper-band excitation manifolds, which allow for the study of the transition
between regular and quantum chaotic spectral statistics. We show that our system makes it possible to control the
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1. Introduction

One of the most remarkable features of a quantum sys-
tem is the ability of transporting electrons and atoms
across classically forbidden regions. This process is al-
lowed by means of a well-known e�ect referred to as quan-
tum tunneling. In semiconductor physics [1], the use of
a superlattice permits the enhancement of the transport
along a speci�c spatial direction, supported, in a �rst
approximation, by the resonant coupling between elec-
tronic levels. Nowadays many of these solid state physics
paradigms are amply investigated in a cleaner manner us-
ing ultracold atoms and optical potentials. The rapid ad-
vances in the experimental techniques have opened a huge
�eld of research, in which the most common approaches
to the description of many-particle physics are based on
the Bose�Hubbard-type Hamiltonians [2�4]. A basic fea-
ture of these Hamiltonian models is that the kinetic en-
ergy is described by means of dynamical hoppings (tun-
neling) between di�erent potential wells. Here, we are
extending such a model to higher energy bands coupled
by means of an external Stark force.

The study of many-body e�ects at resonant tunneling
conditions is not straightforward since, in the presence
of strong correlations, the complexity is overwhelmingly
increased [5�7]. For the single-particle and mean �eld
limits, there are up to date experimental realizations of
the Wannier�Stark system (see for instance [8�18]). Ad-
ditionally, by investigating certain parameter regimes,
for example, in the case of strongly interacting atoms
(hard core bosons), an e�ective description is possible by
mapping the many-body lattice system to analytically
solvable e�ective Hamiltonians [19�21]. In this paper,
we investigate the resonant tunneling e�ect in a Bose�
Hubbard model extended to a second excited Bloch band.
This system, that can be immediately realized in experi-
ments (see Refs. [22, 23] for details), has very interesting
spectral properties. These allow for the study of many-

-body e�ects as, for example, interaction-induced quan-
tum chaos [5, 7], di�usion and relaxation in the Hilbert
space [22] and coherent dynamics in the weak interact-
ing regime [19, 24]. We show that the main spectral
properties can be captured by an e�ective theory based
on upper-band manifold excitations, that can, in prin-
ciple, be measured in experimental realizations such as
reported in [25]. Our approach allows us to characterize:
the onset of quantum chaos, to distiguish the condition
for the emergence of localization in energy space [26, 27],
and to design the type of driving dynamics that can be
implemented in analogy with the well-known Landau�
Zener process [8, 9, 12�14, 28�30].

2. The many-body Wannier�Stark system

2.1. The system and the two-band model

Our system consists of ultracold bosonic atoms in an
optical lattice [3, 4] subjected to an external Stark force.
The force stimulates (a) the atomic transport along the
lattice, for instance, atomic Bloch oscillations [15�17],
and (b) between the Bloch bands, e.g. the Landau�Zener
transitions [10�14]. This latter process is characterized
by the exchange of particles between the bands and is
enhanced at speci�c values of force, Fr ≈ ∆g/2πr, where
∆g is the energetic gap between the two bands. At
those values, resonantly enhanced tunneling takes place
between Wannier�Stark levels distancing r wells [9, 19,
23, 24]. The integer r is from now on called the order of
the resonance. In the following, we restrict to two cou-
pled energy bands. Such a situation is realized, e.g., in a
double-periodic lattice, see Ref. [22].
The many-body physics can then be described by the

celebrated Bose�Hubbard model extended to a two-band
scenario [23, 22]. The corresponding Hamiltonian reads

Ĥ =

L∑
l=1

∑
β

[
−Jβ

2

(
β̂†l+1β̂l + H.c.

)
+
Wβ

2
β̂†2l β̂

2
l

]
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+

L∑
l=1

∑
µ

ωBCµ(â†l+µb̂l + H.c.) +
∑
β

εβl n̂
β
l

+

L∑
l=1

2Wxn̂
a
l n̂

b
l +

Wx

2

(
b̂†2l â

2
l + H.c.

)
. (1)

The annihilation (creation) operators are de�ned by

βl (β†l ), and the number operators are nβl = β†l βl, with
band index de�ned as β = {a, b}. The hopping ampli-
tudes are Jβ=a,b and the on-site interparticle interaction
per band has a strength Wβ . The interband coupling is
generated by dipole-like couplings (Cµ) and by the re-
pulsive interaction (Wx). The large dimensionality of
the parameter space makes it impossible to analytically
solve our problem. Therefore, a numerical procedure to
�nd the eigensystem is required. We quickly summarize
the procedure in the following, and refer the reader to
Ref. [23] for details.

2.2. Numerical treatment

In order to study the eigenenergy spectrum of Hamil-
tonian (1), we �rst implement a transformation into the
interaction picture with respect to the external force. In

this procedure the term
∑
l,β ωBln̂

β
l is removed, and the

hopping and dipole-like terms transform as: β̂†l+1β̂l →
β̂†l+1β̂l exp(− iωBt) and â†l+µb̂l → â†l+µb̂l exp(− iωBµFt).
The big advantage of the transformation into the interac-
tion picture is that now the new Hamiltonian is invariant
under translation and periodic in time. Its period is given
by TB = 2π/ωB, which is known as the Bloch period.
We now set periodic boundary conditions in space, i.e.

β̂†L+1 = β̂†1. In order to diagonalize the time-dependent

Hamiltonian, Ĥ(t), we use the translationally invariant
Fock states {|γi〉} de�ned in Refs. [5, 7], with dimension
given by

Ns =
(N + 2L− 1)!

LN !(2L− 1)!
, (2)

where L is the number of lattice sites andN the total par-
ticle number. We study the eigensystem of the Floquet
Hamiltonian [31] ĤF = Ĥ(t) − i∂t, whose eigenenergies

εi are de�ned as the set of eigenvalues of ĤF lying within
the Floquet zone εi ∈ [−ωB/2, ωB/2] (see details of the
diagonalization procedure in [23]). In the following we in-
troduce an e�ective, analytical description of the spectral
properties based on the upper-band excitation and its re-
spective comparison with the exact numerical results.

2.3. Manifold approach

The non-interacting limit is described by Hamiltonian
Eq. (1) withWa,b,x = 0. Here it is possible to construct a
local Hamiltonian around a single resonance r. This im-
plies that the site la may be connected to the upper-band
lattice site lb = la−r (r sites to the left). We now rescale

the Hamiltonian as Ĥ → Ĥ/∆g, where ∆g is typically
the largest parameter; thus we have |C|µ|>0|/∆g � 1,
which means that only working with the largest dipole

strength, C0, is enough to capture the essential features
of the system. The e�ective Hamiltonian around the res-
onance of order r reads

Ĥr =

L∑
l=1

∑
β

[
−Jβ

2

(
β̂†l+1β̂l + H.c.

)
+ (∆β − ωBr)n̂

β
l

]

+

L∑
l=1

ωBC0

(
â†l b̂l + H.c.

)
, (3)

where the energy separation between the Bloch bands is
∆a,b = {0,∆g}. We then have a Hamiltonian consisting
of two tilted lattices. The eigenenergies of the indepen-
dent lattices are given by the Wannier�Stark ladder for-
mula [28]:

εβl = ωBlβ + ∆β , with lβ ∈ Z. (4)

In the case F = 0, that is, without inter-band coupling
and no tilt, the eigenstates of Eq. (4) can be classi�ed ac-
cording to their number of particles in the upper Bloch
band, de�ned as:

Mi = 〈εi|M̂ |εi〉, with M̂ =
∑
l

n̂bl . (5)

By writing the Hamiltonian matrix representation (4) in
the basis |γi〉, ordered by increasing upper-band occupa-
tion number M , the Hamiltonian is reduced to the block
matrix

Ĥr =


H0,0 H†0,1

H0,1 H1,1
. . .

. . .
. . . H†0,M−1

H0,M−1 HM,M

 .

The diag(Ĥr) = ⊕N
M=0(Ĥr)M is a diagonal block matrix

constructed through the Hamiltonian terms preserving
numberM , i.e., the hopping and energy terms in Eq. (1).
The blocks on the diagonal are matrices with dimension
dM × dM (see Fig. 1a), where dM is given by

dM =
1

L

(
M + L− 1

L− 1

)(
N −M + L− 1

L− 1

)
. (6)

The Hamiltonian only contains non-zero coupling be-
tween those inter-manifold states with excess of par-
ticles ∆M = ±1, with �hopping� strength ωBC0 (see
Fig. 1b). In addition, the Hamiltonian can be reduced
to a tight-binding-type one for the upper-band excitation
manifolds (from now on labeled by M) when describing
the averaged one-particle exchange processes in the res-
onant system. To do this, we use the closure relation∑
i |γi〉〈γi| = 1, which can be rewritten in terms of the

manifold projectors P̂M as follows:
N∑

M=0

P̂M = 1̂, with P̂M =

dM∑
i=1

|γi;M〉〈γi;M |. (7)

Here |γi;M〉 ≡ |na1 , na2 , . . .〉 ⊗ |nb1, nb2, . . .〉 is a Fock state
with M particles in the upper band. The projectors
P̂M allow one to rewrite the Hamiltonian as 1̂Ĥr1̂ =∑
M,M ′ P̂M ĤrP̂M ′ with the eigenstate |ψ〉 of Ĥr ex-

panded as
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|ψM 〉 = P̂M |ψ〉 =
∑
i

|γi;M〉〈γi;M |ψ〉, (8)

and 〈ψM ′ |ψM 〉 = δM,M ′ . The o�-diagonal blocks are not
square matrices but their dimension is dM ×dM+1. They
are computed from the single-particle exchange term

ĤM,M ′ ≡ 〈ψM ′ |
L∑
l=1

ωBC0

(
â†l b̂l + H.c.

)
|ψM 〉. (9)

Fig. 1. Hamiltonian matrix written in the |γi〉 basis.
(a) Block structure of the Hamiltonian in the non-
-interacting case, for the system N/L = 7/4, with
parameter Fr=1 = 0.25. Since N = 7 the matrix
contains 8 blocks corresponding to the N + 1 mani-
folds. The intra-manifold o� diagonal couplings are
set by the hopping terms that do not couple γi states
with di�erent manifold number. (b) Tight-binding-type
many-body Hamiltonian matrix for the same parameter
from part (a). The other parameters are: ∆g = 1.61,
Ja = 0.082, Jb = −0.13, C0 = −0.094, C±1 = 0.037,
and C±2 = −0.0022.

By choosing 〈γi;M |ψ〉 = 1/
√
dM we obtain a simpli-

�ed tight-binding-type Hamiltonian for the manifolds

Ĥ ′r '
N∑

M=0

εrM |ψM 〉〈ψM |+ ωBC0

(
|ψM 〉〈ψM+1|

+ H.c.
)
, (10)

where εrM = (∆g − ωBr)M + (Ja − Jb)M , and ω̃B ≡
ωBC0

√
M + 1. Here we used the relation N = Na +Nb,

with M ≡ Nb, and the order of the resonance is approx-
imately given by r ≈ ∆g/ωB. To obtain the Hamilto-
nian (10) we have assumed that there is no additional
relevant subclass of the Fock states in any M -subspace,
and all possible single-particle processes are equally prob-
able. Under this condition, the Hamiltonian (10) aver-
ages over hopping and dipole-like transition processes,
and its �nal dimension is just N + 1. A di�erent choice
of the distribution of the coe�cients 〈γi;M |ψ〉 would lead
to a similar e�ective Hamiltonian, but restricted to fewer
participating states.
Interestingly, from the new Hamiltonian we can easily

recognize an emerging localization of its respective eigen-
functions |φ〉. To see this, we use |φ〉 =

∑
M QM |ψM 〉,

which together with the Schrödinger equation, Ĥ ′r|φ〉 =
E|φ〉, yields the coe�cient equation

(E − εM)QM = ω̃B(QM+1 +QM−1), (11)

with ε = ∆g − ωBr + Ja − Jb. This equation can be
solved using the ansatz QM = AJM ′−M (xB), where

xB ≡ 2ωBC0/ε and JM ′−M (xB) is the Bessel function of
the �rst kind. Therefore, by using the identity 2kJk(x) =
x[Jk+1(x)+Jk−1(x)] we �nd that the solution of Eq. (11)
is: EM = εM and |φM 〉 = A

∑
M ′ JM ′−M (xB)|ψM ′〉,

with A being a normalization constant. In energy space
the eigenfunction can be written as

φM (ε) ≡ 〈ε|φM 〉 = A
∑
M

JM ′−M (xB)ψM ′(ε), (12)

where ψM ′(ε), the eigenfunctions of the Hamiltonian

Ĥ ′r(ω̃B = 0), is a well-localized function around the en-
ergy εrM . These functions clearly satisfy the relation
ψM (ε − εrM ′) = ψM ′(ε). These are Wannier-like func-
tions in energy space. The probability density is then
given by

|φM (ε)|2

|A|2
= |J0(xB)ψM (ε)

+
∑

M ′ 6=M

JM ′−M (xB)ψM (ε)|2, (13)

which means that, for xB � 1, the probability maximizes
around the manifold energy εrM . The condition for this to
happen is to be far from the resonance where for typical
system parameters: 2ωBC0 � ∆g−ωBr+Ja−Jb. At the
resonance we have ∆g ≈ ωBr and xB ≈ 1, which implies
an overlapping of neighbor manifolds, since the expansion
coe�cients in Eq. (13) with |M ′ −M | > 0 become non-
-negligible. This introduces a kind of hybridization e�ect
between the manifolds responsible for the destruction of
the strong localization of the eigenfunctions φM (ε) (see
Refs. [26, 27] for other contexts of localization in energy
space).
The energy gap between two neighboring manifolds

characterizes the one-particle exchange process (see
Fig. 2b) and can be estimated by straightforward diago-
nalization of the two-level Hamiltonian matrix

Hr
2×2 =

(
εrM+1 ωBC0

ωBC0 εrM

)
, (14)

from which we obtain

∆r = ∆g

√(
1− ωBr

∆g
+
Ja − Jb
∆g

)2

+ 4

(
ωBC0

∆g

)2

.

(15)

We notice that the minimal energy range of the many-
-level spectrum is thus given by ∆E = N∆min

r , with
∆min
r ≈ 2ωrB|C0| and ωrB ≡ 2πFr (for typical parame-

ters, ∆g, ωB � |Jb − Ja|). This energy scale is shown in
Fig. 3a for the single-particle case (N/L = 1/10).

2.4. E�ects of the interparticle interaction

A more precise description of the many-body spectrum
is obtained when considering the e�ects of the interac-
tions, i.e., for Wa,b,x 6= 0. This induces a splitting of
the internal manifold levels and couplings between the
|γi〉 states. The coupling is strong especially at reso-
nant tunneling condition (e.g. F ≈ Fr). In this re-
gion, the manifold levels come closest (see Fig. 2b) and
a natural mixing of the manifold states occurs, that is,
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(a)

(b)

Fig. 2. (a) Numerically computed energy spectrum
versus the Stark force in the single-particle case around
r = 1, with N/L = 1/10. The inter-band coupling
manifests itself around the resonance position Fr by
an avoided crossing. (b) Many-body spectrum for
N/L = 4/5, around r = 1. The di�erent color lines
correspond to eigenstates of the type: |ψM=0〉 (black),
|ψM=1〉 (red), and the mixed-like states, i.e., states with
0 < M < N are represented by the green lines. In
part (a) |φ±〉 represent the hybridized states at F = Fr.
The parameters are those of Fig. 1 with additional in-
teraction strengths: Wa = 0.021, Wb = 0.026 and
Wa = 0.023.

the eigenstates of (1) become hybridized as explained in
Sect. 2.3. This latter e�ect is associated with the oc-
currence of avoided crossings (ACs) around Fr, i.e., with
the lack of symmetries in the system [23]. We can now
easily estimate the largest manifold splittings generated
by interparticle interaction. This is done by consider-
ing the basis states {|γi〉} with M particles sitting in
a single-particle level, in one lattice site, for example
|γi〉 ∼ |N − M, 0, . . .〉a ⊗ |M, 0, . . .〉b. The energy cost
due to the interaction strengths Wa,b,x is thus given by

(UMa )max =
Wa

2
(N −M)(N −M − 1),

(UMb )max =
Wb

2
M(M − 1),

(UMab )max = 2Wx(N −M)M, (16)

which allow one to compute the maximal intra-manifold
splitting as U(M) ≡ max{(UMβ=a,b)max, (U

M
ab )max}. We

can also rewrite the width ∆E as follows:

∆E = N∆min
r + U(N). (17)

This expression is obtained by considering the maxi-
mal splitting of the highest manifold M = N , which
occurs for those eigenstates, whose maximal projection

time

Fig. 3. Driving over the single particle spectrum in
Fig. 2a: parametric-time evolution (from left to right)
of a state initially prepared in the manifoldM = 0 (bot-
tom left of the parts) across the resonance r = 1, with
the linear pulse F (t) = F0+αt. Dynamical parameters:
(left) adiabatic transit (λ = 0.1), (center) non-adiabatic
transit (λ = 1) and (right) diabatic transit (λ = 50).
The color scale is from black (small) to white (large),
and δ = 0.05 in Eq. (16). The parameters are the same
as in Fig. 2.

in the |γi〉 space is given by the state with N parti-
cles in the same upper-band level, say, the state |γi〉 ∼
|000, . . .〉a ⊗ |N00, . . .〉b.
In general, far from the resonance, any eigenstate of

Eq. (1) can be rewritten in the dressed-like state ba-
sis {|M, θa, θb, θx〉} characterized by the integers θβ =

〈εi|
∑
l n̂

β
l (n̂βl − 1)/2|εi〉 and θx = 2〈εi|

∑
l n̂

a
l n̂

b
l |εi〉. The

eigenenergies can then be approximated by

εi(M,θ) ≈Mi∆r +Waθa,i +Wbθb,i +Wxθx,i. (18)

The mixing between the di�erent M -manifolds in the
presence of interparticle interaction is now also triggered
by the coupling between inter-manifold states with ex-
cess ∆M = ±2. This fact implies that the Hamiltonian
Eq. (10) contains a new term, which is just a second
neighbor transition from the manifold M to the mani-
foldM±2. This is nothing but an extended tight-binding
model, with increasing on-site energies εi(M,θ). There-
fore, even in the presence of weak interactions, the eigen-
states 〈ε|φM 〉 preserve localization features.

Computing the following commutator:[
Ĥ

∆g
, M̂

]
=
∑
l,µ

ωBCµ
∆g

â†l+µb̂l +
Wx

2∆g
â†2l b̂

2
l −H.c. (19)

shows that the transition from weak to strong mixing is
determined by the competition between one- and two-
-particle exchange between the bands. This competition
is the stronger the closer we are in resonance, at which
we have that ωB/∆g ≈ 1/r. Furthermore, it is expected
that for a �lling factor N/L ≈ 1, single- and two-particle
transitions have the same occurrence probability, which
makes the system strongly mixed. In the case N/L� 1,
the dominant e�ect is a one-particle exchange character-
ized by the energy scale ∆r, and similarly for N/L� 1,
the two-particle exchange process dominates with energy
scale proportional toWx. These two latter cases favor the
weak manifold mixing. Therefore, the eigenstates of (1)
are expected to be localized in energy space according to
the e�ective Hamiltonian (10).
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So far, we have studied the properties of the Hamil-
tonian (1) by using rather simple approximations based
on the concept of manifold excitation. The results have
shown to be in a good agreement with the numerical
ones. We now show two direct consequences of the spec-
tral properties; �rst we brie�y describe the implementa-
tion of the Landau�Zener-type dynamics by making the
Stark force time-dependent. In this way, driving indi-
vidual eigenstates |εi〉 across an avoided crossing may be
straightforwardly implemented. Secondly, we study the
connection between strong manifold mixing and quantum
chaos in the resonant tunneling regime.

3. Numerics: Landau�Zener dynamics

Around a local resonance, our system provides a natu-
ral scenario for the study of the Landau�Zener-type tran-
sitions. This can be done by de�ning a pulse F (t) =
F0 + αt, with α = ∆F/∆T . Here ∆F is the e�ective re-
gion of resonant tunneling and ∆T is the sweeping time.
We focus on the dynamical driving of a state from the
lowest manifold |ψM=0〉 for the single-particle case. We
have then two manifolds M = {0, 1} and the spectrum
of this system is shown in Fig. 1a. We de�ne the sweep-
ing rate α using the Heisenberg relation ∆Td ≈ 1, where
d = ∆E/Ns = ∆r is mean level spacing at Fr.
The Hamiltonian is now time-dependent, H(F (t)), and

the temporal evolution is computed by using a fourth-
-order Runge�Kutta method. In analogy with the LZ
problem, the evolution across an avoided crossing can
be diabatic, non-adiabatic and adiabatic. In the current
case the dynamical regimes are determined by the param-
eter λ ≡ α/d∆F . Thus for λ � 1 we have slow driving
through resonances, i.e., an adiabatic passage; for λ� 1
a diabatic one, also referred to as sudden quench, and for
λ ≈ 1 we have a non-adiabatic evolution.
To follow the evolution of a state across the reso-

nantly enhanced tunneling (RET) regime, we compute

the detection probabilities pi = |〈εi|Û(t)|ψ(0)〉|2, where
Û(t) = T̂ exp(− i

∫ t
0
Ĥ(F (t))dt). The distribution prob-

ability of the evolved wavefunction in the local energy
space can be represented by means of the local density
of states [32, 33]:

Pψ(ε, t) =
∑
i

piδ(ε− εi), (20)

with the delta function de�ned as

δ(ε− εi) = lim
δ→0

1

π

δ

(ε− εi)2 + δ2
. (21)

In Fig. 2 we show the evolution of the LDOS Pψ(ε, t)
in the single particle case N = 1, i.e. the Hamiltonian
Ĥ ′r in Eq. (10) is a 2× 2 matrix. The initial condition is
|ψ(0)〉 ∼ |100, . . .〉a⊗|000, . . .〉b,M = 0. |ψ(0)〉 is evolved
from F0 < Fr=1 to Ff > Fr=1 (left to right in Fig. 3a)
for the two-state system N/L = 1/10, and we can eas-
ily appreciate the di�erent types of dynamics, that is:
the left part shows the adiabatic regime, for which |ψ(0)〉
nearly follows the energy path (see low-energy state in

Fig. 3a) while being transformed into the excited state
with M = 1. This result is expected according to the ex-
change of character typical of an avoided crossing. This is
a dynamical e�ect following from the adiabatic theorem,
which was already experimentally probed in Arimondo's
group at Pisa University [8, 13, 14, 30]. On the other
hand, the central part shows the non-adiabatic transit
for which the probability is split into both energy path.
This e�ect is similar to the action of a beam splitter on
an incident light beam. Finally, the right part depicts
the diabatic passage for which the state does preserve its
manifold number M but not its energy path. This lat-
ter is characterized by the �delity of the initial state, i.e.
|〈ψ(0)|Û(t)|ψ(0)〉|2 ≈ 1.

4. Numerics: interaction-induced quantum chaos

In this �nal section we study the static eigenspectrum
at strong mixing conditions. Given the eigenenergies εi,
the spectra can be analyzed by the use of random matrix
measures [34]. A robust test of the universal properties of
the discrete eigenspectrum is the so-called level spacing
distribution P (si), where the spacings are de�ned as si =
(εi+1− εi)/〈s〉. The spectrum must be unfolded in order
to compare with the random matrix distributions, i.e.,
such that 〈si〉 = 1 (see Ref. [23] for details).
At the resonances Fr, the crossover between reg-

ular (Poisson), PP(s) = exp(−s), and quantum
chaotic (Gaussian orthogonal ensemble (GOE)) statis-
tics, PW(s) = πs exp(−πs2/4)/2, is reached by vary-
ing the inter-particle interaction. We de�ne the pa-
rameter g that allows one to tune the interaction, i.e.,
Wβ,x → gWβ,x. In the experiment this can be done via
the Feschbach resonances [3]. As expected from the dis-
cussion in Sect. 2.4, for an energy band gap ∆g . 1 and
g = 1, all systems with N/L ≈ 1 exhibit chaotic fea-
tures characterized by the GOE distribution (see Fig. 4a
� black). Nevertheless, this is not a general rule for
every interaction strength, since for weakly interacting
particles the manifold mixing becomes weaker. Hence
quantum chaos can be tuned most easily by increasing
the interparticle interaction, for instance, g = 0→ 1. To
see this transition we compute the parameter

η =

∫ s0
0

[P (s)− PW(s)] ds∫ s0
0

[PP(s)− PW(s)] ds
, (22)

where s0 = 0.4729 . . . is the intersection point between
PP(s) and PW(s). We show the behavior of η (η = 1 for
a Poissonian case and η = 0 for GOE) as a function of g
in Fig. 4b. We see that our two-band model allows us
to concentrate a high density of many-body energy levels
around a resonance, which induces the chaotic features
of the system. This is not the case far from the resonant
regime, since here the system is just weakly mixed due
to the presence of the M -manifolds. Then the spectrum
is nearly regular [22, 23], and well characterized by the
quantum numbers M and θ (see Sect. 2.4), see Fig. 3b.
We thus see that the mixing properties of our system

allow for a straightforward identi�cation of the onset of
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g=0.1
g=1.0

(a)
(b)

Fig. 4. Interaction e�ects: (a) the level spacing distri-
bution P (s) for N/L = 6/5 (Ns = 1001) for the inter-
particle control parameter g = 0.1 (red/grey histogram,
η = 0.97) and g = 1.0 (black histogram, η = 0.035), and
Wx =Wa =Wb = 0.025. (b) parameter η as a function
of g. The black line corresponds to an exponential �t.
The reminding parameters are those of Fig. 3.

quantum chaos, which is a local e�ect in the plane εi
vs. F . Nevertheless, a globally chaotic spectrum can also
be reached by decreasing the energy bandgap ∆g such
that gWx/∆g ≈ 1. In this case, not only resonant tun-
neling between two neighboring wells due to the Stark
force is possible, but also via interaction [20, 21]. These
two processes are equally relevant and, as immediate sig-
nature of this, the local resonances are destroyed. There
are then avoided crossings in the entire energy spectrum.
Therefore, we can switch from global to local quantum
chaos by varying the bandgap ∆g.

5. Conclusions

We studied the spectral properties of a many-body
Wannier�Stark system, especially in the resonant tun-
neling regime. We showed that the main characteris-
tics of our model are well described in terms of upper-
-band excitation subspaces, i.e., M -manifolds. This ef-
fective description provides an intuitive understanding
of interaction-induced quantum chaos. Furthermore, we
have shown that the knowledge of the spectral proper-
ties of the system allows us to control the dynamics when
driving a simple two-state system across an avoided cross-
ing, in the Landau�Zener framework [29, 30]. Our system
can be experimentally realized and it o�ers an interesting
framework for future investigations of many-body physics
[12, 19, 21, 22, 24].
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