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Scattering from the very simple ring graph is shown to display several basic features which underlie the
complex (chaotic) phenomena observed in scattering from more complex graphs. In particular we demonstrate
the appearance of arbitrarily narrow resonances � the �topological resonances� which are directly linked to the
existence of cycles. We use the ring graph to study the response of such resonances to perturbations induced by a
time-dependent random noise.
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1. Introduction

Graphs were introduced to the quantum chaos com-
munity as a paradigm model which is simple to study
both analytically and numerically, yet displaying the
complex features which characterize quantum chaotic dy-
namics [1]. The relevant developments on the subject
are summarized in review articles, such as e.g., [2, 3],
and a recent book [4]. Graphs consist of vertices con-
nected by edges (bonds). Associating a length (met-
ric) to the bonds, and adding semi-in�nite leads from
some vertices to in�nity de�ne the geometry of the metric
graph on which scattering can be studied. The quantum
(wave) dynamics is described by the Schrödinger opera-
tor on the graph: On each bond or lead the wave func-
tion satis�es the one-dimensional wave equation, which,
in the absence of a potential, can be explicitly written
Ψk(x) = A(k)e ikx+B(k)e− ikx, where k is the wave num-
ber. At the vertices, appropriate boundary conditions are
imposed so that the resulting operator is self-adjoint and
the coe�cients A(k), B(k) for the bonds and leads can
be uniquely computed. Here we shall assume the Neu-
mann boundary conditions throughout, that is, at each
vertex v, which is connected to d bonds and leads, the
wave function is continuous and the sum of the outgoing
derivatives vanishes

d∑
e=1

dΨe
dxe

(v) = 0. (1)

Since the study of chaotic scattering on graphs was
initiated [5], the subject was investigated intensively and
the scattering resonances and their statistics is a recur-
ring research theme (see e.g., the recent papers [6, 7] and
the literature cited therein). In particular, very narrow
resonances turn out to be quite sensitive to perturbations
of the underlying system. In Ref. [8] this was shown by
introducing a weak nonlinear perturbation on one bond
of a graph. We consider in these notes another pertur-
bation a graph might be exposed to. Normally a graph
cannot be considered as isolated from its environment

but subject to time dependent external e�ects (noise).
We will show its e�ect on the shape of the resonances in
the system.
The outline of this article is as follows. In the next sec-

tion we introduce the ring graph and compute the wave
functions on the bonds and leads. We provide explicit ex-
pressions for the scattering matrix elements, and for the
scattering resonances. Finally we introduce a random,
time-dependent perturbation on the graph and explain
its e�ect on the resonances.

2. The ring graph

We consider here the ring graph shown in Fig. 1. A
scattering solution with a wave number k on the ring
graph, with an incoming wave in the lead �1� and only
outgoing wave in �4�, and satisfying the boundary con-
ditions at the vertices can be written down explicitly. It
takes the following form on each of the bonds:

1 : Ψk(x) = e ikx +R(k)e− ikx,

2 : Ψk(x) = A(k)e ikx +B(k)e− ikx,

3 : Ψk(x) = C(k)e ikx +D(k)e− ikx,

4 : Ψk(x) = T (k)e ikx. (2)

1

2

3

4

Fig. 1. The ring graph. The two inner bonds labeled
by �2� and �3� form a circle, connected to the two
leads �1� and �4�.

Denoting by L1 and L2 the lengths of the bonds �2�
and �3�, we get,
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T (k) =
8i(sin kL2 + sin kL1)

D(k)
,

R(k) =
2 cos k(L2 − L1) + 6 cos k(L2 + L1)− 8

D(k)
,

A(k) =
2
[
e ik(L2−L1) + 2− 3e− ik(L1+L2)

]
D(k)

,

B(k) =
2
[
e ik(L1+L2) + e− ik(L2−L1) − 2

]
D(k)

,

C(k) =
2
[
2 + e− ik(L2−L1) − 3e− ik(L1+L2)

]
D(k)

,

D(k) =
2
[
e ik(L1+L2) − 2 + e ik(L2−L1)

]
D(k)

. (3)

Here

D(k) = 8− e ik(L1+L2) + e ik(L2−L1) + e ik(L1−L2)

− 9e− ik(L1+L2). (4)

The transmission and re�ection amplitudes T (k) and
R(k) are two entries of the (two-dimensional) scattering
matrix for the ring graph. The other two (corresponding
to an incoming wave from lead �4�) can be written down
in a similar way. Resonances are identi�ed as the poles
of the scattering matrix in the complex k-plane. The real
parts of these k-values determine the wave number where
the resonances occur and the imaginary parts are propor-
tional to the resonance widths. The poles are identi�ed
by the zeros of D(k) in Eq. (4) provided that the residues
at these zeros do not vanish. When this happens, the
spectrum of the graph is no more exclusively continuous,
but proper eigenvalues with normalizable wave functions
appear at discrete k values. These states which are em-
bedded in the continuum play an important role in the
present discussion.

The structure of the resonances of the ring graph in
Fig. 1 depends on the ratio of the lengths L1 and L2.

We start with considering equal lengths L1 = L2 =
2L0. The zeros of D(k) in this case are located at
κn = nπ/(2L0) − i ln 3/(2L0) and kn = nπ/(2L0) with
n ∈ N0. The �rst set of zeros corresponds to complex
poles of the scattering matrix, and hence to a set of broad
resonances with a k independent width ln 3/(2L0). They
are the resonances which are usually called �shape reso-
nances� in scattering theory, and are seen as broad peaks
in the blue curve in Fig. 2 where the transmission spec-
trum |T (k)|2 is plotted. The set of real zeros kn corre-
sponds to states embedded in the continuum, with wave
functions which vanish at the two leads and therefore
also at the two vertices. They cannot be noticed in a
scattering experiment where only the transmission and
re�ection are measured. Let us note that the states em-
bedded in the continuum appear for any ring graph with
rationally related lengths. This is a set of measure zero
but its presence a�ects also scattering from graphs with
irrational ratios as will be seen below.

Indeed, consider the case L1 = 2L0 and L2 = 2L0(1+ε)

Fig. 2. In blue the transmission spectrum |T (k)|2 ob-
tained for the graph in Fig. 1 for equal lengths of the
bonds �2� and �3�, L1 = L2 = 2L0 is shown. The violet
plot is obtained for L1 = 2L0 and L1 = (2 + π/30)L0.

with irrational ε � 1. The transmission spectrum for
ε = π

15 is shown in the red curve in Fig. 2 as an illus-
tration. As long as nε is small, the shape resonances
which dominated the scene for L1 = L2 are only slightly
a�ected, but a new set of sharp resonances appear, and
their position approximately coincides with that of the
shape resonances. This can be easily explained by consid-
ering ε as a small perturbation. Then, for k ≈ nπ/(2L0)
there are two poles in the complex plane instead of one.
The poles which produce the shape resonances move only
slightly. The zeros of D(k) which corresponded to bound
states are moving away from the real axis, with small
imaginary parts, leading to the very narrow dips visible
within the broad resonances in Fig. 2. In order to ob-
tain a better understanding of the location of resonances
in the complex plane we analyze the zeros of D(k) with
Σ = L1 + L2 and δ = L1 − L2 in the limit nδ � Σ .
Writing the zeros of D(k) as k = k′ + iγ we get the two
equations,

8
[
1− cos(k′Σ )eγΣ

]
− cos(k′Σ )

(
eγΣ + e−γΣ

)
+ cos(k′δ)

(
e−γδ + eγδ

)
= 0 (5)

and

8 sin(k′Σ )eγΣ − sin(k′Σ )
(
e−γΣ − eγΣ

)
+ sin(k′δ)

(
e−γδ − eγδ

)
= 0. (6)

With the ansatz k′Σ = 2πn + α, nδ/Σ � 1, γΣ = β
and α, β � 1 we �nd that to order (δ/Σ )2, α = 0 and
β = − 1

8 (2πnδ/Σ )2. Thus, the resonances may have an
arbitrarily narrow width.
Similarly, denoting the shifts of the shape resonance

poles as k′Σ = 2πn + α and γΣ = −2 ln 3 + β, we get
α = πn ln 3(δ/Σ )2 and β = −[(2 ln 3)2−(2πn)2](δ/Σ )2/8
which are small changes compared to k′Σ = 2πn and
γΣ = −2 ln 3.
The mechanism which produces the narrow resonances

is analogous to the one producing the Feshbach reso-
nances in scattering theory [9]. Here the parameter which
is varied and which turns the bound state into a reso-
nance is the ratio of the two arms of the cycle in the
graph. However, the full set of resonances appears only
for an irrational ratio � a distinction which is a peculiar-
ity of the graph system (but is known in various other
instances in quantum chaos, such as e.g., the Floquet
spectrum of the periodically kicked rotor).
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Another way to generate the narrow resonances is to
start from a symmetric ring, and introduce a δ potential
V (x) = αδ(x−x0) at an arbitrary point x0 on one of the
ring bonds. As long as x0 is not a rational fraction of L0,
this perturbation with arbitrarily small α will turn all the
states embedded in the continuum into resonances with
arbitrarily narrow width. This is another way to gener-
ate the same Feshbach resonances, and this is illustrated
in Fig. 3.

Fig. 3. The transmission through a symmetric ring
graph perturbed by a delta potential placed at an ir-
rational point x0 on bond �2�, for α = 0 (blue) and
mα/(~2k) = 0.25 (violet).

Adding a δ potential for a ring graph with irrational
ratio of the bond lengths does not change the resonance
structure in a quantitative way, and if α is small enough it
only shifts the narrow resonances and does not a�ect the
broad structures which are due to the �shape� resonances.
The α values needed to achieve a shift here are much
smaller than the ones needed for the shape resonances
in Fig. 3.
As a �nal remark, let us note that the appearance of

narrow resonances as discussed above is a general phe-
nomenon which occurs in any graph with cycles, and it
is the origin of the topological resonances discussed in [7].

3. Transmission through a ring graph perturbed

by a random time dependent perturbation

We analyze �nally the e�ect of time dependent pertur-
bations on the graph. We therefore add to the system
on bond �2� a delta potential located at a time depen-
dent position γ(t) centered at an arbitrary point x0 with
γ(t)� (L1 − x0):

V (x, t) = αδ{x− [x0 + γ(t)]}. (7)

Our purpose is to study the e�ect of the random noise
on the transmission through the ring for an incident wave
with k values where the unperturbed graph has narrow
resonances.
We calculate [10] the e�ect of V (x, t) on the current

density perturbatively up to second order in α. The time
evolution of the wave function Ψ(x, t) is determined by
the time dependent Schrödinger equation

i~
∂

∂t
Ψ(x, t) = − ~2

2m

∂2

∂x2
Ψ(x, t) + V (x, t)Ψ(x, t). (8)

We obtain an expansion Ψ(x, t) = Ψ (0)(x, t) +

αΨ (1)(x, t) + α2Ψ (2)(x, t) + . . . by recursive solution of
the latter equation that we use to calculate the current
density

j(x, t) =
~

2m i

[
Ψ∗(x, t)

∂

∂x
Ψ(x, t)− c.c.

]
(9)

with the expansion j(x, t) = j(0)(x, t) + αj(1)(x, t) +
α2j(2)(x, t) + . . . and c.c. denoting the complex conju-
gate. The unperturbed current density j(0)(x, t) is given
in terms of the wave function by

j(0)(x, t) =
~

2m i

[
Ψ (0)∗(x, t)

∂

∂x
Ψ (0)(x, t)− c.c.

]
=

~k
m
|T (k)|2 (10)

and the �rst two leading order corrections

j(1)(x, t) =
~

2m i

[
Ψ (0)∗(x, t)

∂

∂x
Ψ (1)(x, t)

+Ψ (1)∗(x, t)
∂

∂x
Ψ (0)(x, t)− c.c.

]
(11)

and

j(2)(x, t) =
~

2m i

[
Ψ (1)∗(x, t)

∂

∂x
Ψ (1)(x, t)

+Ψ (0)∗(x, t)
∂

∂x
Ψ (2)(x, t)

+Ψ (2)∗(x, t)
∂

∂x
Ψ (0)(x, t)− c.c.

]
. (12)

The resulting expressions for the current density de-
pend on γ(t′) with t′ < t. We are however interested
not in the results for a speci�c realization of the noise
introduced by the �uctuating position γ(t), but in its av-
erage behavior. We therefore assume that γ(t) performs a
Brownian motion (di�usion with constant di�usion con-
stant and no drift) and average γ(t) with the Wiener
measure of Brownian motion. Then the squared average
of γ(t) increases linearly with time [11]:〈

γ2(t)
〉
= σ2t (13)

with the proportionality constant σ2 characterizing this
increase.

We can then study how the considered perturbation
a�ects the current density in dependence of the two pa-
rameters α and σ2. We obtain in general that the e�ect
of the perturbation increases with decreasing width of
the resonance as already reported for a static perturba-
tion above. The corrections linear in α to j(x, t) possess
only two di�erent forms: one for σ2m/~ = 0, i.e. a static
perturbation and one for σ2m/~ > 0. The dependence
of j(2)(x, t) on σ2 is more involved. We show in Fig. 4
the dependence of |T (k)|2 calculated up to second order
in α on the parameters α and σ2 for equal lengths of
the bonds �2� and �3�. Note that within our perturba-
tive analysis the very narrow resonances shown in Fig. 3
cannot be obtained. In Fig. 5 for rationally independent
lengths of the bonds �2� and �3� the analogous plots are
presented.
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Fig. 4. The k-dependence of the transmission for shape
resonances. In the �rst plot we consider σ2m/~ = 10−7,
in the second σ2m/~ = 0.1 and in the third σ2m/~ =
105. In each plot the di�erent curves show the transmis-
sion obtained for mα/(~2k) = 0 (blue), mα/(~2k) = 0.2
(violet), mα/(~2k) = 0.4 (yellow), and mα/(~2k) = 0.5
(green).

Fig. 5. The k-dependence of the transmission consid-
ering a very narrow (topological) resonance. We con-
sider σ2m/~ = 10−9 in the �rst plot, σ2m/~ = 10−3

in the second and σ2m/~ = 107 in the third. The dif-
ferent curves in each plot are obtained for the unper-
turbed situation (α = 0, blue), mα/(~2k) = 0.02 (vi-
olet), mα/(~2k) = 0.06 (yellow), and mα/(~2k) = 0.1
(green).

In conclusion, we observe that additionally to the
above mentioned shift there is also a broadening of the
resonance in the regimes ~/m� σ2 and ~/m� σ2.

4. Conclusions

The transmission through the ring graph was analyzed
assuming various length ratios and perturbations. We
have shown that the ring graph displays interesting fea-
tures such as the occurrence of very long lived (narrow)

resonances, and therefore it can be used as a conve-
nient model for understanding some of the mechanisms
which bring about chaotic scattering on graphs. We then
studied the e�ect of random noise on the transmission
through the graph, by modeling the coupling of the graph
to a noisy �environment� by a randomly moving δ poten-
tial on one of the ring bonds.
In many systems of interest, the unavoidable coupling

of the system to the environment [12] needs to be taken
into account. This was the case in e.g., the study of
the e�ect of noise on the dynamical localization in the
Rydberg atoms ionization by periodic electromagnetic
�elds [13]. We consider the present work as the �rst
step in extending the use of quantum graphs as paradigm
model for the study of such randomly perturbed systems.
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