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The recent paper by Hul et al. (Phys. Rev. Lett. 109, 040402 (2012), see Ref. [7]) addresses an important
mathematical problem whether scattering properties of wave systems are uniquely connected to their shapes? The
analysis of the isoscattering microwave networks presented in this paper indicates a negative answer to this question.
In this paper the sensitivity of the spectral properties of the networks to boundary conditions is tested. We show
that the choice of the proper boundary conditions is extremely important in the construction of the isoscattering
networks.
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1. Introduction

More than 25 years were necessary to solve the problem
expressed in the famous question �Can one hear the shape
of a drum?�, posed by Marc Kac in 1966 [1]. It concerns
the problem of uniqueness of the spectrum of the Laplace
operator on a planar domain with the Dirichlet boundary
conditions. The theoretical solution, indicating that in
general the spectrum is not unique, was found in 1992 [2]
and con�rmed experimentally, using microwave cavities,
two years later [3]. Similar problems were also considered
in the context of quantum graphs [4]. For example, the
question regarding the possibility of the determination of
the geometry of a quantum graph in the scattering exper-
iment was, on the basis of the theoretical considerations,
recently answered in the negative [5, 6].
We present here the results of the scattering exper-

iment on microwave isoscattering networks simulating
quantum isoscattering graphs where these theoretical
predictions were tested. The experimental results were
obtained for the frequency range 0.01�2 GHz which is
broader than the one demonstrated in [7]. Furthermore,
we tested the in�uence of the boundary conditions on the
construction of the isoscattering networks showing their
crucial role.

2. Experiment

Quantum graphs can be considered as idealizations of
physical networks in the limit where the diameters of the
wires are much smaller than their lengths. They were
successfully applied to model variety of physical prob-
lems, see, e.g., [8] and references cited therein. They can
also be realized experimentally. Recent developments in
various epitaxy techniques allowed also for the fabrica-
tion and design of quantum nanowire networks [9, 10]. In
2004 Hul et al. [11] showed that quantum graphs could
be successfully simulated by microwave networks. The

experimental con�rmation of the existence of isoscatter-
ing networks simulating isoscattering graphs was demon-
strated in a recent paper by Hul et al. [7]. A microwave
network is a structure of N vertices connected by B
bonds, e.g., coaxial cables. Each vertex i of a network is
connected to the other vertices by vi bonds, vi is called
the valency of the vertex i. Here we consider networks
with typical physical vertex boundary conditions, the
Neumann and Dirichlet ones. The �rst one imposes the
continuity of waves propagating in bonds meeting at i
and vanishing of the sum of their derivatives calculated
at the vertex i. The latter demands vanishing of the
waves at a vertex. A coaxial cable consists of an inner
conductor of radius r1 surrounded by a concentric con-
ductor of inner radius r2. The space between the inner
and the outer conductors is �lled with a homogeneous
material having the dielectric constant ε.

Below the onset of the next TE11 mode [12], inside
a coaxial cable only the fundamental TEM mode can
propagate, in the literature often called a Lecher wave.
We use the continuity equation for the charge and the
current to �nd the propagation of a Lecher wave inside
the coaxial cable joining the i-th and the j-th vertex of
the microwave network [11, 13]:

d2

dx2
Uij(x) +

ω2ε

c2
Uij(x) = 0, (1)

where eij(x, t) and Jij(x, t) are the charge and the current
per unit length on the surface of the inner conductor of a
coaxial cable. The potential di�erence Uij(x, t) between
the conductors of a cable is given by

Uij(x, t) = V ij
2 (x, t)− V ij

1 (x, t) =
eij(x, t)

C
, (2)

where V ij
1 (x, t) and V ij

2 (x, t) are the potentials of the
inner and the outer conductors of a coaxial cable and C
is the capacitance per unit length of a cable. The spatial
derivative of (2) gives [13]:
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d

dx
Uij(x) = −ZJij(x), (3)

where Z is the impedance per unit length. Calculation
of the second spatial derivative of Uij(x, t) leads to the
equation

d2

dx2
Uij(x) + Z

d

dx
Jij(x) = 0. (4)

Using Eqs. (1) and (2), Eq. (4) can be transformed to

d2

dx2
Uij(x)− ZC

d

dx
Uij(x) = 0. (5)

For a monochromatic wave propagating along the
cable eij(x, t) = exp(− iωt)eij(x) and Uij(x, t) =
exp(− iωt)Uij(x), where the angular frequency ω = 2πν
and ν is the microwave frequency. The impedance per
unit length is in this case Z = R − iωL/c2, where R
and L denote the resistance and the inductance per unit
length, respectively, and c is the speed of light in a vac-
uum. For an ideal lossless cable with the resistance R = 0
Eq. (5) leads to the telegraph equation on the microwave
network

d2

dx2
Uij(x) +

ω2ε

c2
Uij(x) = 0, (6)

where ε = LC [14]. The continuity equation for the po-
tential di�erence requires that for every i = 1, . . . , N

Uij(x)|x=0 = ϕi, Uij(x)|x=Lij
= ϕj ,

i < j, Cij 6= 0. (7)

Lij represents the length of the bond joining the i-th and
the j-th vertex of the network. The element Cij of the
N ×N connectivity matrix of a network takes the value
1 if the vertices i and j are connected and 0 otherwise.
The current conservation condition imposing the Neu-
mann vertex boundary condition may be written in the
form

−
∑
j<i

Cij
d

dx
Uij(x)|x=Lij +

∑
j>i

Cij
d

dx
Uij(x)|x=0 = 0,

(8)

where
d

dx
Uij(x) = ZJij(x), (9)

Assuming the following correspondence: Ψij(x) ↔
Uij(x) and k2 ↔ ω2ε

c2 , Eq. (6) is formally equivalent
to the one-dimensional Schrödinger equation (with ~ =
2m = 1) on the graph possessing time reversal symme-
try [15]:

d2

dx2
Ψij(x) + k2Ψij(x) = 0. (10)

Moreover, Eqs. (7) and (8) are equivalent to the equa-
tions derived in [15] for quantum graphs with the Neu-
mann boundary conditions.

Various spectral and scattering properties of mi-
crowave networks simulating quantum graphs have been
studied so far [11, 16�20]. One should point out that
the introduction of one-dimensional microwave networks
simulating quantum graphs increases greatly the number
of systems which are used to verify wave e�ects predicted
on the basis of quantum physics [21�27]. The other sys-

tems used for this purpose include e.g., two-dimensional
and three-dimensional microwave chaotic billiards and
experiments with highly excited hydrogen and helium
atoms. Experiments for two-dimensional microwave sys-
tems were pioneered by [28] and further developed by
[29�40]. Three-dimensional chaotic microwave billiards
have been also studied experimentally [41�44]. However,
for these systems there is no direct analogy between the
vectorial Helmholtz equation and the Schrödinger one.

Fig. 1. The network No. I with N = 4 vertices and the
network No. II (N = 6) connected to VNA, parts (a)
and (b), respectively. The blue numbers denote vertices
with the Neumann boundary condition. The vertices
with the Dirichlet boundary condition are denoted by
the red numbers.

In order to verify experimentally a negative answer to
the modi�ed Mark Kac's question we consider the two
microwave networks (Fig. 1) which simulate [11] the two
isoscattering graphs. The network No. I consists of four
bonds and four vertices, whereas the second one consists
of �ve bonds and six vertices. To obtain the scattering
networks two in�nite leads (in the experiment two elastic
microwave cables) were connected to the vertices 1 and 2
of each network. The optical lengths of the microwave
networks, which were obtained by rescaling of the physi-
cal lengths by the factor

√
ε, where ε ≈ 2.08 is the dielec-

tric constant of a homogeneous material �lling the space
between the inner and outer leads of the cables, were the
same and had the following value: 1.0504 ± 0.0010 m.
The vertices No. 1 and No. 2, de�ned by the number
of bonds and leads meeting at a given vertex, are four-
-valent, whereas the remaining vertices are one-valent.
The Neumann boundary conditions (continuity of waves
and vanishing of their derivatives) were imposed at all
vertices except the vertices No. 4 and No. 6 with the
Dirichlet boundary conditions (vanishing of waves). Such
systems are described by the two port scattering ma-
trix S(ν):
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S(ν) =

(
S11 S12

S21 S22

)
. (11)

In the case when the networks are isoscattering and
dissipative the phases

log
(
det(SI(ν))

)
= log

(
det(SII(ν))

)
. (12)

and the modulus of the determinants (amplitude)[
det(SI(ν))

]
=
[
det(SII(ν))

]
(13)

of their scattering matrices should be equal for all values
of frequency. In order to measure the two port scatter-
ing matrix S(ν) the networks were connected to an Ag-
ilent E8364B vector network analyzer (VNA) via leads
(Fig. 1).

3. Results

The moduli and phases of the determinants determined
for the microwave network No. I (blue solid line) and
No. II (red full circles) in the frequency range 0.01�2 GHz
are shown in the parts (a) and (b) of Fig. 2, respectively.
The agreement between the results obtained for both net-
works is excellent which con�rms that the networks are
isoscattering.

Fig. 2. The amplitude and the phase of the determi-
nant of the scattering matrix obtained for the microwave
networks with N = 4 (blue solid line) and N = 6 (red
full circles) vertices, parts (a) and (b), respectively.

To test the sensitivity of the spectral properties of the
networks to boundary conditions, the measurements of
the S(ν) of the networks I and II with the boundary con-
dition of the vertex 3 and 5, respectively, changed from
the Neumann to Dirichlet one were performed. A com-
parison of the results obtained for the original network I
(blue solid line) with the ones obtained for the same net-
work in which the Neumann boundary condition at the
vertex 3 was replaced by the Dirichlet one is presented
by blue open circles in Fig. 3. In Fig. 3 we also show

Fig. 3. (a) The amplitude and (b) the phase of the
determinant of the scattering matrix obtained for the
microwave network with N = 4 vertices (blue solid
line) compared to the results obtained for the same mi-
crowave network with the Neumann boundary condition
at the vertex 3 replaced by the Dirichlet one (blue open
circles). The red full triangles present the results ob-
tained for the network with N = 6 vertices where the
Neumann boundary condition at the vertex 5 was re-
placed by the Dirichlet one.

the results obtained for the network II with the Neu-
mann boundary condition at the vertex 5 replaced by
the Dirichlet one (red full triangles). Our results clearly
show that such modi�cations severely destroy isoscatter-
ing features. It should be stressed that the results of
the measurements are not only sensitive to the choice
of the boundary conditions but they also depend on the
accuracy of the preparation of all elements of the mi-
crowave networks. The uncertainties of the bond lengths,
which limit the frequency range of the measurements, are
mainly due to the di�culties in the preparation of the
Neumann boundary condition at the vertices.

4. Conclusions

We presented the results con�rming the theoretical
prediction on the impossibility of the determination of
the geometry of a quantum graph in the scattering exper-
iment. We also showed that modi�cations of the bound-
ary conditions of the networks severely destroy their
isoscattering features. It is worth to mention that mi-
crowave networks can be successfully used to investigate
properties of any quantum graphs, also with highly com-
plicated topology, showing a great research potential of
quantum simulations based on microwave systems.
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