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Probing Eigenfunction Nonorthogonality

by Parametric Shifts of Resonance Widths
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Recently, it has been shown that the change of resonance widths in an open system under a perturbation of
its interior is a sensitive indicator of the nonorthogonality of resonance states. We apply this measure to quantify
parametric motion of the resonances. In particular, a strong redistribution of the widths is linked with the maximal
degree of nonorthogonality. Then for weakly open chaotic systems we discuss the e�ect of spectral rigidity on the
statistical properties of the parametric width shifts, and derive the distribution of the latter in a picket-fence model
with equidistant spectrum.
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1. Introduction

Addressing resonance phenomena in open systems, one
usually adopts the scattering approach [1] based on the
so-called e�ective non-Hermitian Hamiltonian [2�6]:

Heff = H − i

2
AA†. (1)

Its Hermitian part H gives rise to N energy levels of the
closed system. The anti-Hermitian part is responsible
for their coupling to M open scattering channels, with A
being an N×M matrix of decay amplitudes. The scatter-
ing resonances are then given by the complex eigenvalues
En = En − i

2Γn of Heff , with energies En and widths
Γn > 0. Since Heff is non-Hermitian, the correspond-
ing right and left eigenfunctions, Heff |Rn〉 = En|Rn〉
and 〈Ln|Heff = En〈Ln|, are no longer orthonormal but
rather form a biorthogonal system, satisfying the rela-

tions 〈Ln|Rm〉 = δnm and
∑N
n=1 |Rn〉〈Ln| = 1.

Nonorthogonality of such resonance states can be gen-
erally quanti�ed by the matrix Unm = 〈Ln|Lm〉 that was
�rst introduced by Bell and Steinberger [7] in nuclear
physics (see also [3, 8]). This matrix di�ers from the
unit matrix; it in�uences the decay laws of open systems
[9] and appears in other physical applications [10]. For
example, the diagonal element Unn is known in optics
as the Petermann factor of a lasing mode [11, 12]. The
other (related to Unn) characteristics include the phase
rigidity [13, 14] and the mode complexness [15, 16] in
open microwave cavities. Nonorthogonal mode patterns
also emerge in optical microstructures [17] as well as in
reverberant dissipative bodies [18] and elastic plates [19].
Non-Hermitian operators are generally known to ex-

hibit extreme sensitivity to perturbations [20]. For open
quantum systems, an important connection has been very
recently recognized in [21], establishing a parametric shift
of resonance widths as a sensitive measure of nonortho-
gonality. Namely, one considers the parametric motion
of resonance states, described by Eq. (1), under a pertur-
bation of the internal region. This can be modelled by

Heff → H′eff = Heff + αV, (2)

where V is a Hermitian N ×N matrix and α is a real pa-

rameter controlling the perturbation strength. The shift
δEn of the n-th resonance can then be found by applying
a perturbation theory routine with necessary modi�ca-
tions induced by biorthogonality [21, 22]. To the �rst
order in α this readily yields the resonance shift as:

δEn ≡ E ′n − En = α〈Ln|V |Rn〉, (3)

generalizing the standard result to the non-Hermitian
case. It is the eigenfunction nonorthogonality that causes
a nonzero value of the imaginary part of δEn. This fact
can be clearly seen from the following representation for
the parametric shift of the resonance width [21]:

δΓn ≡ −2Im(δEn) = iα
∑
m

(UnmVmn − VnmUmn), (4)

where Vnm = 〈Rn|V |Rm〉 = V ∗mn. Since only the terms
with m 6= n contribute to the sum above, the width
shift (4) is solely induced by the o�-diagonal elements
Unm of the nonorthogonality matrix, thus vanishing only
if the resonance states were orthogonal.
In this work, we study the general features of this new

nonorthogonality measure in the context of parametric
motion of two interfering resonances. Then we discuss
statistical properties of the width shifts in weakly open
chaotic systems with or without spectral �uctuations.

2. Unstable two-level system

We will consider the case of preserved time-reversal
symmetry, when both H and V are real symmetric ma-
trices and A is also real. The system in question is gen-
erally described by the following e�ective Hamiltonian:

Heff =
1

2

(
∆− iγ1 − i

√
γ1γ2 cos θ

− i
√
γ1γ2 cos θ −∆− iγ2

)

+ α

(
d v

v −d

)
. (5)

Here, ∆ stands for the energy separation of two parental
levels. Following [3], we have parameterized the cou-
pling term − i

2 (AA
†) in terms of the scalar products of

two M -dimensional vectors of decay amplitudes, {Ac1,2},
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Fig. 1. (a) Dynamics of two resonances under the per-
turbation of the internal region, Eqs. (5)�(7), preserving
the system openness (Γ1+Γ2 = const) and total energy
(E1 + E2 = 0). The energies (solid lines) and widths
(dashed lines) are shown as a function of the perturba-
tion strength α. The system parameters are: ∆ = d = 1,
v = 0.75, γ1 = γ2 = 0.5 and θ = π

10
. (b) The corre-

sponding parametric width velocity, Eq. (11). It attains
its maximum (or zero) at the value α∗ (or α◦) that is
indicated on the abscissa with the sign ∗ (or ◦).

with the angle θ between them and γ1,2 =
∑M
c=1(A

c
1,2)

2.
We have also chosen V to be traceless, thus eliminat-
ing the trivial total energy shift. Since V is Hermitian,
the term αV does not change the total system openness.
Altogether, this implies the following sum rules (at any
real α):

E1 + E2 = 0,

Γ1 + Γ2 = const = γ1 + γ2 (6)

for the energies and widths. A formal diagonalization
of (5) gives the complex resonances explicitly,

E1,2 = − i

4
(γ1 + γ2)±

1

2

√
ε2 − ν2, (7)

with ε = ∆+2αd− i
2 (γ1−γ2) and ν =

√
γ1γ2 cos θ+2iαv.

When system parameters change, the energies and widths
exhibit crossings and anticrossings, see Fig. 1, which were
studied in various physical situations [8, 23�27].

To make the connection between such parametric mo-
tion and the properties of resonance states, we represent
the corresponding right eigenvectors as follows [15]:

|R1〉 = N

(
1

− if

)
, |R2〉 = N

(
if

1

)
, (8)

the left eigenvectors being just the transpose of (8). Here,
N 2 = 1/(1 − f2) is the normalization constant and we
have introduced the complex parameter f ,

f = ν/(ε+
√
ε2 − ν2), (9)

describing the mixing of the resonance states. In such a

Fig. 2. The Argand diagrams for (a) the complex en-
ergies En = En− i

2
Γn; and (b) the mixing parameter f .

The system parameters are the same as in Fig. 1. The
solid (dashed) lines correspond to the positive (negative)
values of the perturbation parameter α. Dots (•) show
the initial values (α = 0). A strong redistribution of the
widths is clearly seen at α = α∗, when the nonortho-
gonality reaches its maximum (indicated by ∗). The
corresponding values at α = α◦, when two resonance
states become orthogonal, are shown by ◦.

parameterization, the Bell�Steinberger matrix reads

U = |N |2
(

1 + |f |2 −2iRef
2iRef 1 + |f |2

)
. (10)

Clearly, the nonorthogonality is due to nonzero Ref .
It is now instructive to consider the rates, Γ̇n ≡ δΓn

δα ,
at which the widths change with α → α + δα (δα � 1).
Treating the term δαV as a perturbation to (5), one can

readily �nd Γ̇n from (4) and (10) in the explicit form,

Γ̇1 = 4Ref
v(1− |f |2)− 2dImf

(1 + |f |2)2 − 4Ref2
= −Γ̇2. (11)

Such a parametric width �velocity� vanishes at Ref = 0,
when the states are orthogonal. It develops a maximum
corresponding to that of Ref , with its height being con-
trolled by Imf . In the vicinity of such a point, when the
nonorthogonality is at maximum, a strong redistribution
of the widths takes place. All these features are clearly
seen in Figs. 1 and 2. Let us note that this width redis-
tribution has a di�erent nature from that considered in
Refs. [3, 5], where it was caused by varying the strength
of coupling to the continuum. Here, the coupling to the
continuum is kept �xed, the width redistribution being
induced by interior perturbations due to the increased
mixing and nonorthogonality of the resonance states. It
is worth mentioning that the point of the maximal degree
of nonorthogonality does not generally coincide with that



1076 D.V. Savin, J.-B. De Vaulx

of the minimal distance of the eigenvalues in the complex
plane. (See also [28] for the general geometric approach
to parametric sensitivity in non-Hermitian systems.)
Expression (11) together with the corresponding result

for the parametric energy velocities, Ėn ≡ Re(δEn)/δα,

Ė1 =
(1 + |f |2)[d(1− |f |2) + 2vImf ]

(1 + |f |2)2 − 4Ref2
= −Ė2, (12)

provide a direct access to the mixing parameter f from
resonance spectra. We stress that U11 appears as the pro-
portionality coe�cient in (12), whereas U12 does in (11).
This gives a promising way of probing spatial character-
istics in open systems by purely spectroscopic tools, with
various spectral data being readily available [24, 27, 29].
The above description generally holds everywhere ex-

cept at exceptional points [5, 22, 28, 30]. These are the
branching points of (7) corresponding to ε = ±ν. At
such points, f = ±1, which implies coalescence and self-
-orthogonality of the eigenstates [30]. In our model, the
proximity to the exceptional points is controlled by v 6= 0
(for the real parameters). Thus, our results (11) and (12)
also provide analytical tools to study such proximity ef-
fects in resonance dynamics, see [31] for the related study.

3. Weakly open chaotic systems

We proceed with the general case of N -level systems
in the regime of weak coupling to the continuum. In this
case, the non-Hermitian part of Heff can be treated as a
perturbation to the Hermitian part H =

∑
nEn|n〉〈n|.

To the leading order in the coupling, the resonance

widths are given by Γn =
∑M
c=1 |Acn|2, whereas the para-

metric width velocities read [21]:

Γ̇n =
∑
m 6=n

〈m|Gn|m〉
En − Em

, (13)

where En are the energy levels of the closed system and
Gn denotes the following Hermitian operator:

Gn = AA†|n〉〈n|V + V |n〉〈n|AA†. (14)

Considering chaotic systems, one usually deals with
statistical modeling in the limit N � 1. In the present
case of preserved time-reversal symmetry, the coupling
amplitudes are chosen as real Gaussian random variables
with zero mean and variance

〈
AanA

b
m

〉
= Γδnmδ

ab [3].
This yields the well-known Porter�Thomas distribution,

PM (κ) =
1

2M/2Γ (M/2)
κM/2−1 e−κ/2, (15)

for the widths κn = Γn/Γ in units of the mean partial
width Γ . With the assumption of Gaussian distributed
wave functions, it can be shown [21] that the following
representation holds for the rescaled width velocities:

yn =
Γ̇n

Γ
√

Tr(V 2)
=

√
κn
π

∆
∑
m 6=n

zmvm
En − Em

. (16)

Here, ∆ is the mean level spacing (near the n-th level)
and the quantities zm and vm are real normal variables.
The statistical properties of the width velocities yn can

be characterized by the probability distribution function

PM (y) = ∆
〈∑N

n=1 δ(En)δ(y − yn)
〉
. In the weak cou-

pling regime, spectral and spatial �uctuations become
statistically independent that allows one to perform the
averaging over {En, κn} and {zm, vm} separately. Mak-
ing use of the convolution theorem, the �nal expression
for the distribution can be cast as follows [21]:

PM (y) =

∫ ∞
0

dκ√
κ
PM (κ)φ

(
y√
κ

)
, (17)

where the function φ(y) depends only on the spectral
properties of {Em} (around En = 0) and is de�ned as:

φ(y) =

∫ ∞
−∞

dω

2π
e iωy

〈∏
m 6=n

|Em|√
E2
m + ω2∆2/π2

〉
. (18)

Conventionally, the energy levels in chaotic systems
with time-reversal symmetry are induced by the so-called
GOE-distributed random Hamiltonian H [2, 3]. For such
a model, the exact form of φ was also derived in [21]:

φ(GOE)(y) =
4 + y2

6(1 + y2)5/2
. (19)

When substituted into (17), it leads to the distribution

of the width velocities in the GOE case, P(GOE)
M (y). The

latter has a power law decay, P(GOE)
M (y) ∝ |y|−3, which

can be linked with the linear level repulsion.
To study the in�uence of level �uctuations onto statis-

tics of the width velocities, it is instructive to consider
the picket-fence model [16]. In this model the energy
levels are equally spaced, En − En±k = ±k∆, implying
complete spectral rigidity. The variance of y can be easily
computed from (16) by taking into account the normal

character of z and v: var(y) = 〈κ〉
π2

∑
k 6=0 k

−2 = M
3 . In

contrast to the GOE case where all the (even) moments
diverge, the �nite variance in the picket-fence model im-
plies much faster decay of the corresponding distribution

P(PF)
M (y). To �nd the latter explicitly, we �rst note that

the product featuring in (18) can now be computed as
follows:

∏∞
k=1[1 + ω2/(πk)2]−1 = |ω|/ sinh |ω|. Taking

the Fourier transform, we �nally arrive at

φ(PF)(y) =
π

2 [1 + cosh(πy)]
. (20)

Expressions (17) and (20) give the distribution P(PF)
M (y)

of the width velocities in the picket-fence model. As M
grows, this distribution gets broader, approaching the

limit P(PF)
M�1(y) = 1√

M
φ(PF)

(
y√
M

)
at M � 1. Such a

behavior is illustrated in Fig. 3 at several values of M .
Comparing the two models, we see that the main im-

pact of spectral �uctuations is on the distribution tails,
which become exponentially suppressed in systems with a
completely rigid spectrum. By virtue of (4), this directly
applies to the o�-diagonal elements Unm of the nonortho-
gonality matrix. These results complement similar �nd-
ings [16] on the diagonal elements Unn, thus providing a
complete description of statistics of nonorthogonality in
weakly open chaotic systems.
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Fig. 3. Distributions of the parametric width veloci-
ties for weakly open chaotic systems with the equidis-
tant spectrum at M = 1 (•), 2 (◦), 5 (?) and 10 ( )
open channels. The solid lines show the analytical re-
sult, Eqs. (17) and (20). The symbols stand for numer-
ics with 2000 realizations of 250× 250 random matrices
(only 25 levels around E = 0 were kept).

4. Conclusions

In summary, we have studied the nonorthogonality of
resonance states in open quantum systems by means of
parametric dynamics. For the two-level system, we have
given the complete analytic solution and, in particular,
linked a strong redistribution of the widths with the max-
imal degree of nonorthogonality. For weakly open chaotic
systems, we have found that enhancing spectral rigidity
leads to the suppression of nonorthogonality e�ects.
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