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We study the scattering of torsional waves through a quasi-one-dimensional cavity both from the experimental
and theoretical points of view. The experiment consists of an elastic rod with square cross-section. In order to
form a cavity, a notch at a certain distance of one end of the rod was grooved. To absorb the waves, at the
other side of the rod, a wedge, covered by an absorbing foam, was machined. In the theoretical description, the
scattering matrix S of the torsional waves was obtained. The distribution of S is given by Poisson's kernel. The
theoretical predictions show an excellent agreement with the experimental results. This experiment corresponds,
in quantum mechanics, to the scattering by a delta potential, in one dimension, located at a certain distance from
an impenetrable wall.
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1. Introduction

The scattering of waves by cavities is a problem of
interest in several areas of physics. This is due to the
fact that cavities present the majority of phenomena ob-
served in the scattering by complex systems [1�3]. The
theoretical and numerical studies of scattering by cavi-
ties are extensive including the simplest one-dimensional
ones [3�6] and the two-dimensional cavities both, inte-
grable and chaotic [7�11]. The quantum graphs [12]
which also display complex behavior can be considered
as one-dimensional scattering cavities.
Up to now, scattering experiments by cavities have

been performed using mesoscopic cavities [13], quantum
corrals [14], microwave cavities [15�22], optical micro-
cavities [23, 24] and microwave graphs [25]. In all these
experiments the measurements are done in the frequency
domain. Wave transport experiments on elastic systems,
on the other hand, are scarce and mainly performed in
the time domain [26, 27]. In this paper we introduce a
system in which the transport of elastic waves can be
studied in the frequency domain from both, the theoret-
ical and experimental points of view.
We organize the paper as follows. In the next section

we propose a theoretical model for the scattering of tor-
sional waves by a one-dimensional cavity in an elastic
beam. This is done by grooving of a rectangular notch in
a speci�c place of a semi-in�nite beam. The scattering
matrix S of this system is obtained and we show that its
distribution is correctly described by Poisson's kernel.
In Sect. 3 we describe the beam used in the experi-

ment: a notch in one side of the beam and a passive
vibration isolation system, on the other side. This beam

allows the measurement of the scattering of waves by the
cavity formed by the notch and the free-end of the beam.
In the same section the experimental setup, used to mea-
sure the resonances of the elastic cavity, is also presented.
In Sect. 4 we compare the analytical results with the ex-
periment. Some brief conclusions are given in Sect. 5.

2. The theoretical model and Poisson's kernel

In order to study the resonances of an elastic one-
-dimensional cavity, let us consider a semi-in�nite elastic
rod with square cross-section of side W . As it is shown
in Fig. 1, the cavity is formed by a rectangular notch
of width a and depth h which have been machined at a
distance L from the free-end of the rod. To �rst order,
the torsional wave equation gives a correct description
of the scattering of the waves in all regions: inside the
cavity, at the notch, and outside the cavity. This model
is an analogue of a quantum mechanical delta potential
situated at a certain distance from an impenetrable soft
wall (Neumann boundary conditions).
The solution of the torsional wave equation, in terms

of the wave amplitudes in the di�erent regions of the rod
(see Fig. 2), can be written as

ψ(x)=


A1 e

ikx +B1 e
− ikx for − L ≤ x ≤ −a/2,

An e
iknx +Bn e

− iknx for − a/2 ≤ x ≤ a/2,
A2 e

− ikx +B2 e
ikx for x ≥ a/2,

(1)

where the wave number kj , in the corresponding region
of the beam, is given by [28]:

kj =
2π

cj
f, (2)

with f � the frequency and cj � the velocity of the
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Fig. 1. (a) Quantum scattering cavity formed by a
delta potential and an impenetrable barrier. (b) An
elastic scattering cavity formed by a notch on a semi-
-in�nite rod.

Fig. 2. Waves in the di�erent regions of the semi-
-in�nite rod. The width and depth of the notch are a
and h, respectively. The length of the cavity is L−a/2.

waves in the respective region. This velocity is related to
the shear modulus G and the density ρ, through

cj =

√
G

ρ

αj
Ij
, (3)

where Ij is the polar momentum of inertia and αj is given
by the Navier series in the corresponding region with rect-
angular cross-section whose base isWj and height hj [for
x ∈ (−L,−a/2), h1 = W1 = W , while hn = W − h and
Wn =W for x ∈ (−a/2, a/2)]; that is,

αj =
256

π6

∞∑
m=0

∞∑
p=0

1

(2m+ 1)2(2p+ 1)2

× hjWj(
2m+1
hj

)2
+
(

2p+1
Wj

)2 . (4)

Since the one-dimensional cavity has a free-end at
x = −L, we impose the condition that dψ(x)/dx van-
ishes at x = −L. We will see below that this boundary
condition gives an appropriate description of the experi-

ment. The continuity of ψ(x), as well as of the torsional
momentum between the di�erent regions, allows us to
obtain the scattering matrix associated to the system,
namely

S = rn + tn
1

1− rn e2 ik(L−a/2)
e2 ik(L−a/2)tn, (5)

where rn and tn are the re�ection and transmission am-
plitudes through the notch, given by

rn = − e ikna − e− ikna

λ−1
λ+1 e

ikna − λ+1
λ−1 e

− ikna
(6)

and

tn =
λ−1
λ+1 −

λ+1
λ−1

λ−1
λ+1 e

ikna − λ+1
λ−1 e

− ikna
, (7)

where λ = α2/α1.
Notice that the scattering matrix depends on the fre-

quency through the wave numbers [see Eq. (2)]. With
ideal conditions S(f) is a unitary matrix, such that in the
1×1 case it becomes a complex number of unit modulus.
In a real situation when S(f) is measured in arbitrary
units, as it is the case of elastic systems, its modulus
is not unit; that is, S(f) =

√
R0 e

iθ(f). Therefore, the
movement of S(f) as f is varied, describes a circle of
radius

√
R0 in the Argand plane; but it does not visit

the circle with the same probability; instead S(f) is dis-
tributed according to the non-unitary Poisson kernel [5]:

p(θ) =
1

2π

R0 −
∣∣S∣∣2∣∣S − S∣∣2 , (8)

where S is the average of S(f) in frequency which, to-
gether with R0, is obtained from the experiment. Of
course, when R0 = 1, Eq. (8) reduces to the ordinary
Poisson kernel [29].
For the elastic cavity modeled by Eq. (5), R0 = 1 and

θ depends on the frequency but also on the parameters
of the rod which are �xed. As an example, we consider
a cavity formed on an aluminum rod of square cross-
-section of 25.4 mm of side with a notch of 18.0 mm
depth. The physical parameters of the aluminum alloy
6061-T6, that we use in the experiment, are G = 26 GPa
and ρ = 2.7 g/cm3, such that

√
G/ρ = 3103.2 m/s.

The numerical resonances of this cavity, eleven in to-
tal, are shown in Fig. 3, where θ(f) is plotted as a func-
tion of f for the frequency range between 14 kHz and
20 kHz. Also, in Fig. 3 we show the distribution of θ in
this frequency range, which has been obtained numeri-
cally and compared with Poisson's kernel given by Eq. (8)
for R0 = 1. The agreement is almost perfect.

3. The experimental setup

The theoretical model described in the previous section
can be studied experimentally in the corresponding elas-
tic system. As it is seen in Fig. 4, we use an aluminum rod
with square cross-section. This rod is divided into four
regions: region I is the quasi-one-dimensional cavity of
length L−a/2, where a is the width of a notch of depth h,
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Fig. 3. The phase θ of the S-matrix in the frequency
range between 14 kHz and 20 kHz (left part). The dis-
tribution of θ, for the same numerical data (histogram),
agrees with Poisson's kernel, Eq. (8) (continuous line in
the right part).

that de�nes region II and simulates the quantum delta
potential. Regions III and IV mimic the semi-in�nite
one-dimensional space at the right of the cavity; the vi-
brations are trapped in a wedge in region IV which acts as
a passive attenuation system, together with a polymeric
foam that covers it. This scheme minimizes the re�ection
at the right-end of the rod and consequently the normal
modes of the complete system are diminished; it allows
to measure the resonances of the cavity formed by the
left free-end of the rod and the notch.

Fig. 4. In the system L = 2.5 m, the depth and width
of the notch are h = 0.018 m and a = 0.0009 m, re-
spectively. The beam has a total length of 3.6 m and a
square cross-section of 0.0254 m of side. The wedge has
a length of 0.40 m and it is covered by a polymeric foam.
The elastic beam is suspended by two nylon strings (not
shown). The connection of the equipment is shown at
the bottom.

The elastic system is subject to a torsional elastic
excitation via an electromagnetic acoustic transducer
(EMAT) disposed in torsional wave con�guration [30].

The exciter generates a sinusoidal torque at region III
of the elastic system. The excitation of the wave is pro-
duced by an oscillating magnetic �eld of frequency f gen-
erated by an AC current I(t) on the EMAT's coil, at the
same frequency. When a paramagnetic metal is close to
the EMAT magnetic �eld, as Faraday's induction law es-
tablishes, eddy currents are produced inside the metal.
These currents experience the Lorentz force due to the
permanent magnetic �eld of the EMAT's magnet. In con-
sequence the metal rotates locally in both directions at
the frequency f .
The response is detected by a second EMAT located

outside the cavity, as shown in Fig. 4. As a detector,
the EMAT works in the following way: when a rotating
metal is located near the �eld of a permanent magnet,
some loops in the metal will have a non-vanishing variable
magnetic �ux that will produce eddy currents. These
currents will generate an oscillating magnetic �eld that
will be measured by the EMAT's coil. In this way, the
EMAT detector measures the torsional acceleration of
diamagnetic metal [31].
To produce the torsional vibration in the elastic sys-

tem we use a vector network analyzer (VNA, Anritsu
MS-4630B). The VNA produces a sinusoidal signal of fre-
quency f , which is ampli�ed by a Cerwin-Vega CV-900
ampli�er. The ampli�ed signal is sent to the EMAT ex-
citer. The torsional acceleration measured by the EMAT
detector is recorded directly by the VNA for its analysis
(see Fig. 4).

4. Comparison between theory and experiment

The spectrum of a typical measurement is given in
Fig. 5, which shows the observed resonances (thick line).
The thin line corresponds to a measurement in which the
magnet of the EMAT has been removed; this signal is
the impedance curve of the coil and the lines that appear
over it are due to radio stations and they must be disre-
garded. One can observe, also in Fig. 5, that the exper-
imental resonances of the cavity are in very good agree-
ment with the theoretical predictions (vertical marks) of
Fig. 3. The comparison between the numerical values of
the resonances of torsional waves and the predicted ones,
is given in Table, where errors less than 0.1% are ob-
served. Although some resonances do not appear, they
become visible when the location of the EMAT exciter
is changed. The remaining resonances belong to other
types of vibrations (compressional or �exural).
Within the frequency range measured, between 14 kHz

and 20 kHz, there are eleven resonances. Due to the
impedance of the EMAT's coil, the scattering matrix S
describes a circle in the Argand diagram, but displaced
from the origin (not shown here).
In Fig. 6 we show two of the resonances, (a) 14819 Hz

and (b) 15960 Hz (see Table), as they are seen from the
center of their corresponding circles. In parts (c) and (d)
of Fig. 6 we observe the circles whose radii are not the
unit. As we previously explain, this is due to the arbi-
trary units of measurement in the amplitude. In parts (e)
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Fig. 5. Spectrum measured with the detector located
just outside the cavity after the notch (thick line). The
thin line corresponds to the base line measured without
the magnet of the EMAT detector. The vertical lines
correspond to the theoretical predictions obtained from
Fig. 3 (see also Table below).

TABLE

Torsional resonances of a cavity of length L = 2.5 m
formed by one free end and a notch of width a = 0.0009m
and depth h = 0.018 m. The agreement between the
theory and experiment is excellent.

Resonance Theory [Hz] Experiment [Hz]

1 14256 �

2 14826 14819

3 15396 �

4 15966 15960

5 16537 16528

6 17107 17097

7 17677 �

8 18247 18237

9 18818 18800

10 19388 19400

11 19958 19949

and (f) we compare the histograms of their phases with
the non-unitary Poisson kernel given by Eq. (8), where
the values of the average S of the S-matrix and their
radii, taken as averaged quantities, have been extracted
from the corresponding experimental data. As can be
seen, the agreement is excellent still for the resonance at
f = 14819 Hz that shows the worst agreement.

5. Conclusions

We have studied the scattering of torsional waves in a
quasi-one-dimensional elastic system. This system con-
sists of a beam with a notch between a free-end and a
passive vibration attenuation system that simulates the
incoming and outgoing channels at one end of the rod.
Theoretically, we obtained the 1 × 1 scattering matrix
from the solution of the torsional wave equation; the nu-

Fig. 6. Phase of the S-matrix as a function of fre-
quency f (a) for the resonance at 14819 Hz and (b)
for the resonance at 15960 Hz. The movement of the
S-matrix as a function of frequency f in the Argand
diagram for the same resonances are given in the parts
(c) and (d), respectively. The distributions of the phase
in parts (e) and (f) show an excellent agreement with
the non-unitary Poisson kernel (continuous line). The
resonances are observed from the center of the circles
(for explanation see the text).

merical predictions helped to select the torsional reso-
nances, among many other vibrational modes that were
detected in the experiment. We also veri�ed that the ex-
perimental distribution of the phase of the scattering ma-
trix is described by Poisson's kernel, which is a very im-
portant theoretical result in scattering of waves by open
systems. Despite that the rod is �nite we have con�rmed
that we opened the system from one side, forming in this
way a quasi-one-dimensional open cavity.
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