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The phenomenon of the Anderson localization of waves in elastic systems is studied. We analyze this phe-
nomenon in two di�erent sets of systems: disordered linear chains of harmonic oscillators and disordered rods
which oscillate with torsional waves. The �rst set is analyzed numerically whereas the second one is studied both
experimentally and theoretically. In particular, we discuss the localization properties of the waves as a function of
the frequency. In doing that we have used the inverse participation ratio, which is related to the localization length.
We �nd that the normal modes localize exponentially according to the Anderson theory. In the elastic systems,
the localization length decreases with frequency. This behavior is in contrast with what happens in analogous
quantum mechanical systems, for which the localization length grows with energy. This di�erence is explained by
means of the properties of the re�ection coe�cient of a single scatterer in each case.
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1. Introduction

The discovery of the Anderson localization phe-
nomenon in quantum mechanics gave origin to one of
the most important subjects in condensed matter physics
since it has a crucial e�ect on the transport properties of
materials. As a matter of fact, the original work of An-
derson [1] is among the most cited papers of the twentieth
century. The theory of the Anderson localization [1, 2]
studies the alterations in the localization properties of
the wave functions brought about by disorder in the sys-
tem. It is well known that in a perfect periodic material
the allowed energy levels form a band structure and the
wave functions associated with the allowed energies are
extended along the whole system. In this case, when
an electric �eld is applied to the material and the en-
ergy of the electrons is such that there exist empty levels
with energy close to the Fermi energy, the electrons can
move throughout the material and an electrical current
is produced. However, if the system has random imper-
fections, for example when there are strange atoms in an
otherwise ideal chemical composition or when there is ab-
normal spacing between some atoms due to dislocations,
the wave functions could be localized in some region of
the system, therefore a�ecting the conductivity. In the
particular case of one-dimensional in�nite disordered sys-
tems, any amount of disorder produces localization in all
the wave functions except for a set of states with zero
measure. Thus, band theory and the theory of the An-
derson localization allow us to understand why some ma-
terials conduct electricity and why others do not.

The Anderson localization has also been observed in
many classical wave-like phenomena: in optics [3�8], elas-

ticity [9�13], water waves [14], and cold atomic gases [15].
When the systems are translationally invariant, on the
one hand, the elastic wave amplitudes are extended. One
also �nds a band spectrum of frequencies in this case.
The wave amplitudes become localized in the disordered
elastic systems, on the other hand, as is also true in solid
state physics. However, in the elastic experiments one
can go beyond what is obtained in quantum mechanics,
since we can measure the wave amplitudes at each point.
This allows us to understand the Anderson localization
phenomenon in a deeper way.
In this work we study this phenomenon in two di�er-

ent sets of elastic systems: the special linear harmonic
oscillator chains described in Fig. 1 of Sect. 2, and the
disordered elastic rods de�ned in Sect. 3. For the �rst
set of systems we present numerical results while for the
disordered rods this work has an experimental part and
a theoretical one. To discuss the wave localization we
calculate the inverse participation ratio. We also present
a brief discussion of the mean free path `m.

2. Linear harmonic oscillator chain

In this section we analyze the �rst ensemble of elas-
tic systems. Each member of the ensemble is a linear
harmonic oscillator chain (LHOC), formed by n identical
point particles of mass m coupled by n+1 springs, which
in the general case have di�erent strengths ki. The two
ends of each LHOC are �xed to walls with in�nite mass.
For homogeneous systems all the springs are equal to each
other and the normal-mode frequencies can be obtained
in closed form, as �rst done by Lagrange in 1788 [16].
In the general case, the problem can be solved using the
following well-known formalism.
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The Lagrangian of the linear chain is

L =
m

2

n∑
j=1

ξ̇2j −
1

2

n+1∑
j=1

kj (ξj − ξj−1)
2
, (1)

where ξj(t) is the value of the coordinate of the j-th mass
measured with respect to its equilibrium value ξ0j ; there-
fore ξn+1 = ξ0 = 0, since they correspond to the in�nite
mass walls. The Lagrange equations take the form

mξ̈j = −kjξj−1 + (kj + kj+1) ξj − kj+1ξj+1. (2)

When all the masses move with the normal mode of fre-
quency ωI, that is, when ξj(t) = ψI

j exp(− iωIt), where

ψI
j is the oscillation amplitude of mass j in the normal

mode I, the following eigenvalue equation is obtained:

−kjψI
j−1 +

[
(kj + kj+1)−mω2

I

]
ψI
j − kj+1ψ

I
j+1 = 0.

(3)

Solving Eq. (3) is equivalent to diagonalizing the matrix
H with elements

Hj,j−1 = −kj , Hj,j = kj + kj+1, Hj,j+1 = −kj+1,(4)

and Hi,j = 0 otherwise. In this process one obtains the
normal-mode frequencies ωI and the corresponding eigen-
vectors ΨI = (ψI

1, ψ
I
2, . . . , ψ

I
n).

Many di�erent sets {ki} have been analyzed in the
past [17]. Here, we shall introduce a special set which
behaves exactly as a vibrating rod with notches in com-
pressional oscillations. We introduce a set of N blocks,
each consisting of Nj springs with strength k′ and con-
nected to their adjacent neighboring blocks by a spring
of constant k. See Fig. 1. When k′ � k this system of
blocks behave, for compressional oscillations, in a simi-
lar way as a vibrating elastic rod with notches; the soft
springs play the role of the notches. Indeed, as will be
published elsewhere, when all Nj are identical to each
other, the oscillator chain produces the band spectra we
have found for a locally periodic rod with notches [18].
Furthermore, we have also found that changing Nj in
such a way that

Nj =

[
N

1 + jγ

]
, (5)

where [x] means the largest integer not greater than x
and γ is a real number, the Wannier�Stark ladder that
we encountered in [19] is regained. Our oscillator chains
are, as a consequence, useful to study disordered elastic
systems and to learn how Anderson localization emerges.

Fig. 1. Disordered chain of harmonic oscillators. The
zoom shows an ampli�cation of two particular blocks
with N6 = 3 and N7 = 4.

We form the ensemble of LHOC's in the following way:
the family of numbers {Nj}, is a set of uncorrelated in-
teger random numbers. The ensemble is de�ned with a
uniform distribution in the interval [N(1−∆), N(1+∆)].
Here N is the average of Nj and ∆ measures the disor-
der. In the results we show here, we used N = 70 and
∆ = 2/7. Each member of the ensemble has in general a
di�erent number of masses and springs.
We shall now present some results that show that the

Anderson localization arises. In Fig. 2, we show exam-
ples of (ψI

j)
2 for some particular normal-mode frequen-

cies ωI of a given member of the ensemble with N = 50.
In Fig. 2a, b, e, and f, the values of (ψI

j)
2 are plotted

in arbitrary units, whereas in Fig. 2c, d, g, and h, the
same wave amplitudes are given but in a semi-log scale,
respectively. The four values of I considered in this �g-
ure correspond to wave functions with 49, 54, 72, and 82
nodes, respectively. From these �gures the localization of
wave amplitudes is evident. Since the logarithmic plots
are straight lines at both sides of the maxima, the wave
amplitudes decrease exponentially on the average. One
should mention that the wave functions with a number
of nodes much less than N are not appreciably altered
by the disorder since the wavelength is larger than the
block size.

Fig. 2. Square of wave amplitudes of four particular
normal modes of a disordered linear chain.

To discuss the localization properties of the ensemble
of oscillator chains, we have calculated the inverse partic-
ipation ratio (IPR). For a given eigenstate Ψ I the IPR is
given by

∑
j [ψ

I
j ]
4 and measures the number of sites that

contribute signi�cantly to the eigenfunction normaliza-
tion. For states with an exponential decay, such as those
given in Fig. 2, the IPR is directly connected with the
localization length ξ [20].
To calculate the average of the IPR we have considered

an ensemble of systems like the one de�ned in Fig. 1.
Then, we have calculated the IPR for all the eigenfunc-
tions of the ensemble which have a normal-mode fre-
quency in a certain eigenvalue interval. The points of
Fig. 3 represent the values of the IPR−1 of 50 di�erent
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Fig. 3. IPR−1 as a function of ω. The points are ob-
tained from 50 di�erent disordered chains with N = 50,
N = 70, ∆ = 2/7, and n ≈ 3500. The continuous line
is a window average.

disordered chains. The continuous line shows the window
average.
In order to construct the LHOC that simulates the

behavior of a particular disordered rod we use the fol-
lowing procedure. Let us consider the rod of Fig. 4. If
the length of the j-th sub-rod is dj millimeters, then one
constructs a block consisting of a linear chain with [dj ]
masses. Here [dj ] means the largest integer not greater
than dj . These masses are joined by [dj ] − 1 springs of
strength k′. Finally, as mentioned before, each block of
masses is coupled with its neighboring blocks by means
of springs of strength k � k′. We have built, also with
this procedure, the equivalent LHOC associated with the
real rod studied in the laboratory. In Fig. 5 we show
the values of the IPR−1 as a function of frequency ω for
this LHOC (full circles). We observe that the IPR−1 de-
creases with frequency. The continuous line indicates a
window average.

Fig. 4. Disordered rod which consists in a set of sub-
-rods of di�erent length. The values of the parameters
are RL = 1.28 cm, η = Rε/RL = 0.65, d = 7.2 cm,
∆ = 0.35, ε = 1.016 mm and N = 50.

Measuring the time displacements of many particles
subject to di�erent springs is, however, a tough problem,
which can become very cumbersome. Therefore, to per-
form experiments the oscillator chain will be replaced by
an elastic rod with notches. We have already mentioned
that the compressional modes for these rods behave iden-
tically to the special LHOC used here. However, we shall
consider in the next section results for torsional vibra-
tions for the two following reasons. On the one hand,
one expects that compressional and torsional modes be-

Fig. 5. IPR−1 as a function of ω for the special LHOC
that simulates the real rod studied in the laboratory.
The red triangles indicate a window average of 20 eigen-
values.

Fig. 6. IPR−1 as a function of the frequency f for the
rod studied in the laboratory. The triangles indicate a
window average of 20 eigenvalues.

have in a similar way since they obey the same equation;
on the other hand, torsional waves are easier to measure
with the experimental setup that we use. As we will see
below, the IPR−1 of Fig. 5 shows indeed similar results to
those measured for the torsional modes of the rod given
in Fig. 6.

3. Inhomogeneous elastic rod

We now study the torsional waves in rods with notches
spaced at random along their axis. Each rod consists of a
set of N coupled sub-rods with the same axis and radius
RL and whose lengths are d1, d2, . . . , dN . The family
{di} is a set of N random uncorrelated lengths with a
uniform distribution in the interval [d(1−∆), d(1 + ∆)].
Here d is the average of di and ∆ measures the disor-
der. As shown in Fig. 4 the N sub-rods are joined by
identical short cylinders of radius Rε = ηRL and length
ε � di, ∀i. The parameter η, the coupling constant,



1066 R.A. Méndez-Sánchez et al.

satis�es the relation 0 < η ≤ 1. For the experiment we
have analyzed only one rod, which was machined from
a single aluminum piece. It should be mentioned that
in the numerical simulations we have considered an ideal
case of free conditions at the ends of the rod which is an
approximation of the real con�guration since the rod is
supported by means of two thin threads. The frequency
range we used in the experiment was 0�87 kHz and there-
fore

RL=1.28 cm<λmin=
cT
fmax

=
3140 m/s

87000 Hz
=3.60 cm, (6)

which means that the cross-section of the rod is not ex-
cited, so it behaves as a quasi one-dimensional system.
The value of cT , the speed of torsional waves, was mea-
sured by �tting the spectrum of the aluminium rod before
machining the notches.

We have calculated numerically the set of eigenval-
ues {fi} and the corresponding eigenfunctions, using the
Poincaré map method [21]. Then, the IPR as a func-
tion of frequency was obtained and an average of the
localization length in some intervals of frequencies was
calculated. The calculations were done with an e�ective
value of the parameter η as discussed in Refs. [18, 22].

Fig. 7. The experimental setup used to measure
normal-mode amplitudes and frequencies of the rod of
Fig. 4. Torsional waves are excited with the EMAT on
the left side of this �gure, whereas the detection is made
with the EMAT placed on the translation system. In
both EMAT's the coil axis is perpendicular to the per-
manent magnet axis and these in turn are orthogonal to
the rod axis.

To perform the measurements, the electromagnetic-
-acoustic transducer (EMAT) developed by us [18, 22],
was used. The EMAT consists of a permanent magnet
and a coil, and can be used either to detect or excite the
oscillations. The transducer operates through the inter-
action of eddy currents in the metallic rod with a perma-
nent magnetic �eld. According to the relative position of
the magnet and the coil, the EMAT can either excite or
detect selectively compressional, torsional or �exural vi-
brations. Used as a detector, the EMAT measures accel-
eration. This transducer has the advantage of operating
without mechanical contact with the rod. This is cru-
cial to avoid perturbing the shape of the localized wave
amplitudes. Both the detector and exciter are moved au-
tomatically along the rod axis by a computerized control
system so the wave amplitudes can be measured easily

(see Fig. 7).

Whenever the wave amplitude is measured, it is nec-
essary to keep the system at resonance, so the wave gen-
erator must be as stable as possible. In order to achieve
this, a Stanford Research Systems DS345 wave generator
with an ovenized time base with stability < 0.01 ppm was
used in the experiment. This is enough when variations
of the bar temperature are not important. In our case
this condition was satis�ed since the measurements were
made in a very short time interval.

Fig. 8. Measured localized wave amplitudes: (a) f =
18220 Hz, (b) f = 18942 Hz, (c) f = 34370 Hz, (d)
f = 25380 Hz, (e) f = 51553 Hz, and (f) f = 35560 Hz.

Before presenting the experimental and numerical re-
sults, we shall consider what we will call an independent
rod model. This provides a qualitative argument to un-
derstand why all normal modes of a disordered rod are
localized. The small sub-rods of length di are indepen-
dent of each other when η → 0. The i-th sub-rod is ex-
cited when the driving force has a frequency f equal to

f
(q)
i = pcT /2di, where cT is the speed of torsional waves
and p is an integer. The other sub-rods are, generally,
not excited since dj is usually di�erent from di. Hence,
the amplitude of the vibration decreases and the wave
amplitude is localized. Several experimental examples of
this fact are shown in Fig. 8b, d and f, where we have
plotted the logarithm of the wave amplitude as a func-
tion of the coordinate x along the rod. We observe that
the envelope of the logarithm is a straight line at both
sides of the maximum, which implies that the wave am-
plitude decreases as an exponential function. However, it
could also happen that the length of some other sub-rod,
say dk, be almost equal to di. The amplitude of the vibra-
tion could then present two maxima. In Fig. 8a, c and e
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this case is apparent; we observe that they also decay
exponentially. When the disorder is very small, that is
∆� 1, the above argument implies that all the sub-rods
can be excited with a driving frequency f ∼ pcT /2d so
the localization of the wave amplitude grows and it could
even exceed the total length L of the complete rod.

From this independent rod model we see that intro-
ducing disorder in the set {di}, whose �rst e�ect is to
produce a disordered set of normal-mode frequencies,
is a way to simulate a diagonal disorder in a quan-
tum one-dimensional tight-binding Hamiltonian where
the coupling η between �rst neighbors is equal to a con-
stant. Therefore, the rods considered here are quasi
one-dimensional disordered systems where the frequency
plays the role of the energy in quantum mechanics. If
all the sub-rods of radius RL have the same length, the
vibrations of the rod are extended waves traveling in a
periodic structure.

In the laboratory we have proceeded as follows. We
have measured the values of the amplitude of each eigen-
function at a su�ciently large number of points of the rod
and then, by using a least-squares �t, we have matched a
function of the form C exp(−|x−x∗|/ξ) to their envelope;
here x∗ is the position of the maximum of the amplitude.
This provides us with the localization length ξ. Several
eigenfunctions in each frequency interval were considered
and the average of ξ was evaluated. In most cases, we
were able to measure the right-hand side of the wave am-
plitude only, because the exciter, placed at the left-hand
side of the rod, produces a magnetic �eld in this zone
that a�ects the measurements of the detector. With the
purpose of adopting a systematic rule to de�ne ξ and
its experimental error, we have taken into account only
the side of the wave amplitude that decays exponentially
towards the increasing values of x. The �t was always
made taking into account only 10 points.

For some eigenmodes the �t could be done in two or
three zones, so several values of ξ were obtained. In these
cases ξ was de�ned as the average of these values.

In Fig. 9 we show the experimental and numerical av-
erage values of ξ as a function of the frequency f . A good
agreement between the experiment and the numerical
simulations is obtained. It is found that, in the elas-
tic rods, the localization length ξ of the normal modes
decreases with the frequency. This is corroborated ob-
taining the participation ratio for the experimental rod;
the IPR−1 is shown in Fig. 6.

One should note that in the quantum mechanical ana-
log, ξ grows with the energy eigenvalue. This di�erence
is not surprising if one analyzes the behavior of the indi-
vidual scatterers that constitute the system in each case:
a notch for the rod and a potential barrier for the quan-
tum case. In particular, when one calculates the re�ec-
tion coe�cient |r|2 as a function of the eigenvalue for the
case of a notch one obtains

Fig. 9. The localization length ξ as a function of the
frequency f . The dots correspond to the experimental
measurements and the continuous line to the numerical
average using an ensemble of 3000 rods.

|r|2classical =
4 sin2(Qε)(

η4−1
η4+1 −

η4+1
η4−1

)2
+ 4 sin2(Qε)

, (7)

whereas for the case of a quantum particle of mass m
in the presence of a rectangular barrier of height U0 and
width ε one gets

|r|2quantum =
4 sin2(qε)(

η̃4−1
η̃4+1 −

η̃4+1
η̃4−1

)2
+ 4 sin2(qε)

, (8)

where Q = 2πf
cT

, q =
√

2m
~2 (E − U0), η̃ =

(
E−U0

E

)1/8
, and

~ is Planck's constant divided by 2π.
In Fig. 10 we show a plot of |r|2classical as a function

of Qε. We can see that this is an increasing function of
the eigenvalue in the range of frequencies we use, whereas
in the quantum case it decreases with the energy. The
crucial di�erence between the two cases is that in the
elastic case η is a constant determined by the geome-
try of the system, whereas in the quantum case η̃ is an
increasing function of the energy. For these simple scat-
terers, we have also calculated the mean free path `m
de�ned as `m ≡

(
|r|2/∆x

)−1
, where |r|2/∆x is the re-

�ection coe�cient per unit length. In our case we have
taken ∆x = ε. As a consequence of the previous discus-
sion, the behavior of `m in the classical system we have
considered is opposite to that in the quantum case. In
particular, the classical `m is a decreasing function of the
frequency whereas for the quantum case it is an increas-
ing function of the energy.
Let us note that in the classical case a re�ection co-

e�cient that increases with frequency indicates that the
smaller the wavelength is, the more noticeable the de-
fects, i.e., the notches, are. Therefore the defects tend
to decrease the transmission when the wavelength also
decreases. In the quantum case one has a re�ection co-
e�cient that decreases with energy which indicates that
the greater the wavelength is, the defects, i.e., the po-
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Fig. 10. Re�ection coe�cient |r|2classical as a function of
Qε for torsional waves through a notch. The continuous
and dashed lines correspond to η = 0.5 and η = 0.7,
respectively.

tential barriers, are less important. This fundamental
di�erence between the quantum model and the classi-
cal system re�ects the incapacity to simulate quantum
potentials using rods with notches. Consequently, it is
expected that in our experiments the dependence of the
localization length as a function of frequency be oppo-
site to that observed in the quantum case. Nevertheless,
the Anderson localization phenomenon appears in both
situations.
We now return to the discussion of systems with a

large number of scatterers. Since the waves show an ex-
ponential decrease, it is expected that the square of the
transmission coe�cient |t|2 = 1−|r|2 shows an exponen-
tial decrease of the form

|t|2 = exp

(
− x

`′m

)
, (9)

where `′m is a constant which, as is easy to see, is equal to
the mean free path `m. In fact, if we evaluate the above
expression for x = ∆x� `′m we have

|t|2 = 1− |r|2 = exp

(
−∆x

`′m

)
= 1− ∆x

`′m
, (10)

which implies that `m = `′m.

4. Conclusions

In the present work two di�erent sets of elastic disor-
dered structures were analyzed. We have presented, both
numerically and experimentally, evidence of the Ander-
son localization. The localization length of the normal
modes as a function of frequency was measured on elas-
tic rods by means of the wave amplitude as well as by the
inverse participation ratio, and not by means of the trans-
mittance. A good agreement between the numerical sim-
ulations and the experimental values was obtained. We
have found that the localization length and the participa-
tion ratio decrease with the frequency, which is opposite
to the quantum mechanical case.
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