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We discuss lower and upper estimates for the spectral gap of the Laplace operator on a finite compact connected
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1. Introduction

This note will describe some of recent developments in
the spectral theory of quantum graphs. More precisely,
we are going to discuss the spectral gap — the distance
between two lowest eigenvalues — for the Laplace op-
erator on metric graphs in connection to geometric and
topological properties of the underlying graphs. Our ap-
proach can be generalized further to include Schrédinger
operators with non-trivial potentials on the edges and
many observed properties will be preserved. On the other
hand, studying the case of zero potential (Laplacian) en-
ables us to focus on spectral features determined by geo-
metric and topological properties only. The spectral gap
is not only important for stability properties for evolu-
tion equation on graphs, but prove to be an important
measure of their connectivity [1]. Our goal is not only
to describe recent results in the area, but to indicate few
interesting directions of further research.

Quantum graphs — differential operators on metric
graphs — is an important area of modern mathematical
physics going through a rapid development during recent
years. There are already three monographs devoted to
the subject and we refer to these books for further ref-
erences and historical remarks [2-4]. We just mention
that the spectral gap for quantum graphs was discussed
in [5-9].

2. Basic definitions

Consider an arbitrary finite compact metric graph
viewed as a collection of a finite set of compact intervals
E, = [xon_1,T2,), n =1,2,..., N joined together at the
vertices V,,,, m = 1,2,..., M identified with equivalent
classes of end points x;, j = 1,2,...,2N. In the corre-
sponding Hilbert space

N
Ly(I) =@ ) La(En)
n=1

consider the Laplace operator L = —dd—; defined on the
functions u from the Sobolev space W (I'\UM_,V,,) sat-
isfying standard matching conditions at every vertex V,;,:
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the function u is continuous; (2.1)

the sum of normal derivatives 0,u at V,,

is equal to zero 5szevm Opu(xj) = 0.

This differential operator to be denoted by L(I") is called
the standard Laplacian and is uniquely determined by
the underlying graph I'. The operator is self-adjoint,
non-negative and the spectrum is pure discrete, since
I' is formed by a finite number of compact intervals.
The lowest eigenvalue Ao(I') is equal to zero and is
non-degenerate, provided the graph is connected. The
corresponding eigenfunction is just the constant func-
tion. The difference between the lowest two eigenvalues
AL = M) = Xo(I") = M () is called the spectral gap
and will be the main object of our interest.

3. Rayleigh estimate

The Rayleigh quotient gives us an exact formula for
the first eigenvalue

! 2
M(D) = min 7ff [v'(@)] dx,
w: [, u(x) de=0 fF ‘U($)|2 dx

where the minimum is taken over all functions u from
the domain of the quadratic form which are orthogonal
to the ground state eigenfunction ¢o(x) = 1. The domain
of the quadratic form consists of all functions from the
Sobolev space W3 (I' \ UM_,V,,,) which are continuous
not only on the edges but at the vertices as well. The
minimum is realized if we substitute instead of u any
eigenfunction corresponding to the eigenvalue A;. Taking
an arbitrary function w(x) (not necessarily orthogonal to
the ground state) we get the following estimate for the
first eigenvalue and therefore for the spectral gap:

/ 2
M(I) < Jr W' (x)]? dz 5
S lw(z)?da — ﬁ [ w(z)dz]
(3.2)
The function w appearing in the last formula should of
course belong to the domain of the quadratic form of the
Laplacian.
It follows that chopping a certain vertex into two or
more (independent) vertices cannot lead to an increase
of the spectral gap, but in many cases will lead to its

decrease. Let us denote by I'” the new graph appearing
as a result of chopping: it has precisely the same edges

(3.1)

A(T) =

(1060)
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as I', but to get back the vertices in I' one might need
to join together several vertices in I".

The simplest case occurs when chopping of a vertex
makes the graph not connected. Then the new graph
consists of at least two connected components and the
ground state becomes degenerate. Hence the spectral
gap is zero.

If chopping does not make the graph disconnected,
then the set of functions used in the Rayleigh quotient
is increasing: it is not required anymore that the func-
tions have the same values at the chopped vertices in I’
corresponding to the same vertex in I'. Since the set
of allowed functions is increasing, the minimum may de-
crease or stay the same. If the minimizing function for
I'" has the same values in the chopped vertices, then re-
quirement that the values are the same does not change
the minimum.

This idea can be applied to get an explicit estimate
for the spectral gap for Eulerian graphs — graphs with
even valencies (degrees) of all vertices. The Euler theo-
rem from 1736 [10, 11] states that for such a graph there
exists a path P going along each edge precisely once (Eu-
lerian path). The original graph I' can be transformed
into the path P by chopping its vertices sufficiently many
times. It follows that:

A(P) < \(D). (3.3)
The path P can be identified with the loop-graph of
length £(I') and its eigenvalues can be explicitly calcu-
lated

o \?
)\j—<£j>, i=1,2,...

The spectral gap A(P) = X\ (P) is equal to (2%)2 and
provides a lower estimate for the spectral gap of L(I).
We have proven the following proposition.

Proposition 1. [Theorem 2 from [9]] Let I be a con-
nected finite compact metric graph with even valencies of
all vertices and with the total length L(I") and L(I") —
the corresponding Laplace operator on I’ defined on the
functions from the Sobolev space W3 (I'\ {V;}}L,) satis-
fying standard matching conditions (2.1) at the vertices.
Then the spectral gap for L(I") can be estimated from be-
low as follows:

AT) = M(T) > (25)2

This approach can be generalized to give a lower es-
timate for arbitrary (not necessarily Eulerian) graphs.
In order to use the idea with the Eulerian path we may
double all the edges getting a new graph I'* with double
total length 2£(I") and doubled valencies of all vertices.
Any function on I' can be extended to I'* by assigning
the same values on every doubled edge as on the original
one. In this way we get an upper estimate for \;(I'*),
which is at the same time a lower estimate for A;(I):

A () < M (T). (3.5)
Applying Proposition 1 to graph I'™* we get a new esti-
mate for the spectral gap of L(I):

(3.4)
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Proposition 2. [Theorem 1 from [7] and Theorem 1
from [9]] Let I' be a connected finite compact metric graph
with the total length L(I") and L(I"') — the correspond-
ing Laplace operator on I' defined on the functions from
the Sobolev space W3(I' \ {V;})L)) satisfying standard
matching conditions (2.1) at the vertices. Then the spec-
tral gap for L(I") can be estimated from below as follows:

2
A(r) = x(1) = (%) (3.6)
The latter Proposition gives a lower estimate which is 4
times worth than the one in Proposition 1, but it is not re-
quired that the valencies of all vertices are even, i.e. that
the graph is Eulerian. It follows that among all graphs
with the same total length the graph formed by one edge
has the lowest spectral gap. Similarly, Proposition 1 im-
plies that among all Eulerian graphs with the same total
length the spectral gap is minimal for the loop. It is clear
that obtained estimates cannot be improved since they
are sharp for the edge and loop graphs, respectively. On
the other hand, to make graph Eulerian it is not always
necessary to double all the edges — for certain classes of
(non-Eulerian) graphs it might be enough to double just
few edges leading to improved estimates in comparison
with (3.6).

It is interesting to mention that Proposition 2 has also
been proven (earlier) using symmetrization technique.
The main idea of this approach is to use the first eigen-
function 1 (I") to construct an admissible function on
the interval of the same total length and use it in the
Rayleigh estimate. That approach does not use geomet-
ric and topological properties of the underlying graph and
can hardly be generalized to obtain the estimate from
Proposition 1. On the other hand, it might be fruitful
to combine the two methods to get better estimates for
other special classes of graphs.

4. Cheeger type estimate

This section is devoted to the proof of an upper es-
timate for the spectral gap. We are going to use the
Rayleigh quotient again, but the corresponding construc-
tion is more involved. Our goal is to study whether
Cheeger’s approach originally developed for the first non-
trivial eigenvalue of the Laplace—Beltrami operator on a
compact Riemannian manifold M [12] can be generalized
for quantum graphs. Cheeger’s original estimate is ob-
tained by considering all possible submanifolds S divid-
ing M into two submanifolds with boundary M; and M,
and the corresponding constant

nf Area(S)
(M1oM,8) min{ VoM, VolMy}
where Area(S) and Vol(M;) denote the corresponding
volumes of manifolds of different dimensions. Then the
first nontrivial eigenvalue satisfies

b=

(4.1)

1
AL > ihz.

One may prove a similar inequality for Laplacians on
graphs, but the form of the inequality is different. Con-
sider an arbitrary connected metric graph I' and its de-
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composition into three sets:
e two nonintersecting subgraphs Iy and Is;
etheset S=1\(I1NIYy).

We assume that the set S consists of a collection of
edges with the following property: precisely one of the
end points belongs to each of the subgraphs I'; and 1.
One may view this triple (S, I'1, I';) as a cut of the origi-
nal graph I': one cuts the graph along the edges belong-
ing to S so that the original graph falls into at least two
parts Iy and I'5. Let us note that we do not assume that
I'1 and I’y are connected. Such a cut of a metric graph
will be called proper. Observe that proper cuts do not
allow to cut the graph along the loops.

With any cut (S, I't, I2) as described above let us as-
sociate the quotient (Cheeger’s quotient)

E(F) ZE"eS E:Ll

C(S7F1,F2)(F) ,C(Fl)[:([’g) ’
where ¢,, = x5, — Z2,_1 denotes the length of the inter-
val E,. Here L(I') is the total length (volume) of the
original graph I' and £(I'2) are the total lengths (vol-
umes) of the two components into which the graph I" is
divided. The quantity » 5 g ¢y lis a certain measure
(volume) of the part of I" which is cut away.

Consider the function w defined as follows:

1, x eI,
w(r) =4 —1, x €Iy, (4.3)
0 [—dist(x, Ih)+dist(z, I2)], 2 € E, C S,

(4.2)

where the distances dist(z,I’;), 7 = 1,2 are calculated
along the corresponding interval z € E,,. Here it is very
important that every edge from S builds a certain bridge
between Iy and I5. The continuous function w is con-
structed in such a way that it is equal to £1 on I7 and
I'; and is linear on the edges connecting Iy and I's. The
mean value of the function might be different from zero.
In that case the function w has to be modified so that
it will be orthogonal to the ground state. Consider then
the function u which is not only continuous, but also or-
thogonal to the ground state

u(w) = w(z) = L)~ w, 1 .

The Rayleigh quotient for the function f gives an upper
estimate for the spectral gap.

Let us calculate the Dirichlet integral and the norm
of u:

I =l " I,y

= (=20, de =4 ¢, (4.4)
EnZGS /E" Ezn
w7 my=l w2,y =L w, 1)* > L(I1)
-1 2 [’(Fl)ﬁ(FQ)
+L(T) — L(D)7HL(y) — L(1)) > 4W'

This gives the following upper estimate for Ay (I):
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M) < e,y (1), (4.5)
where we use (4.2).

Theorem 1. Let I' be a connected finite compact met-
ric graph without loops, then the spectral gap A(I") for the
corresponding standard Laplacian can be estimated from

above by Cheeger’s constant C(I'):

Al = M(I) <C(I)

B ) L)Y s b

o (S,I'1,I's)—proper cut of I E(F])E(Fg)

Proof. The result follows immediately from esti-
mate (4.5) taking into account that the proper cut
(S, I'1, I';) dividing I' into disconnected components is
arbitrary. 0

We have already mentioned that L£(I') and L£(I2)
can be considered as volumes of the graph I' and its
subgraphs I 5. The minimum is realized if the sub-
graphs Iy and I'; have approximately the same volumes
L(I'2) ~ 2L(I'). The set S should be chosen with the
minimal possible measure ZEneS ¢, which means that
to get the best estimate one should cut I' along few long
edges. On the other hand, choosing long edges for S de-
creases the denominator £(I'1)L£(I:). The choice of the
optimal proper cut is not obvious and is worth to study.

(4.6)
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