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We consider a two-level system, which couples via non-commuting operators to two independent oscillator
baths. When the coupling is symmetric, the renormalized hopping matrix element is �nite even for in�nitely
strong coupling strength. The two-level system is in a delocalized phase. For �nite coupling strength a localization
transition occurs for a critical asymmetry angle, which separates the localized from the delocalized phase. Using
the method of �ow equations we are able to monitor real time dynamics.
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1. Introduction

Localization phenomena are ubiquitous in quantum
physics. They are at the core of our understanding
how classical physics comes about in quantum mechanics.
The Anderson localization, respectively weak localization
is a purely wave-mechanical e�ect, where extended waves
are suppressed by a subtle interplay between disorder
and coherent wave propagation [1�3]. Decoherence, the
loss of quantum coherence by interaction with environ-
mental degrees of freedom, leads therefore unavoidably
to a suppression of the Anderson localization. On the
other hand, decoherence itself is the key ingredient for
the quantum measurement process, which is under cer-
tain circumstances itself a localization phenomenon.
A major objective of this manuscript is to understand

the last assertion in more detail. To this end let us �rst
consider a rather generic model of decoherence, given by
the following system bath Hamiltonian:

Ĥ = ĤS + ÂS ⊗ Êenv + Ĥenv, (1)

where ÂS is an arbitrary operator of the system and Êenv

is an operator of the environment. Following Zurek [4]

(see [5, 6] for reviews) the operator ÂS singles out a pre-
ferred basis, the so-called pointer basis, for the reduced
density matrix ρS of the system. In this basis the opera-
tor ÂS is diagonal. If the total density matrix is initially
in a product state and interaction is switched on, the sys-
tem becomes entangled with the environment on a time
scale, which is called decoherence time. If the coupling
to the environment is strong enough in the long time
limit the reduced density matrix is almost diagonal in
the pointer-basis. The question, whether or not an en-
vironment e�ciently spoils quantum coherence or not, is
subtle and cannot be answered generally, but must be
investigated case by case.
For this reason we consider as speci�c example a par-

ticle in a double well potential as depicted in Fig. 1. Ex-
amples of this situation include some types of chemical
reactions or the motion of a magnetic �ux trapped in a
radio-frequency SQUID ring for external �ux bias near
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half a �ux quantum [7]. In Fig. 1 the ground state wave
function is sketched by the red curve. It has two peaks
localized at the minima of the potential, whose width is
determined by the tunneling rate respectively by the os-
cillator frequency ω0 in each well. Following the above
arguments a coupling of the particles position to the en-
vironment sharpens the peak, i.e. increases its height and
decreases its width. The question, if and under what con-
ditions the environment is capable to shrink the peak to
a delta, i.e. to fully diagonalize ρS in position was sub-
ject to a large number of investigations during the last
decades. Let us brie�y compile the most notable facts
[6, 8�10].

Fig. 1. Sketch of the physical situation of the dissipa-
tive two-level system. On the right, the interaction of
the particle with a Bosonic environment (sketched by
photonic lines) gives rise to a sharpening of the peaks.

To begin with one must assert that the position expec-
tation value will always have a non-zero variance, since
position is a continuous degree of freedom. However in
the present context we are not interested in �uctuations
which take place in one and the same well, but rather in
the �uctuations due to tunnelling. In the limit where the
oscillator frequency is much larger than the tunnelling
rate ω0 � ∆ intra-well �uctuations are more and more
suppressed and the double well potential described by a
two-level system [8]. If further the environment is mod-
elled by a bath of harmonic oscillators, the dynamics is
described by the spin boson Hamiltonian or dissipative
two-level system (~ = 1):

Ĥ = Ĥ0 + ĤI,

Ĥ0 = −∆Ŝx+
∑
k

λk(âk+ â†k)⊗ Ŝz+
∑
k

ωkâ
†
kâk, (2)

where Ŝn, n = x, y, z are spin operators and âk are
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Bosonic annihilation operators. It is a well-known fact
[9] that the complete information about the e�ect of the
environment is encapsulated in a single spectral function
J(ω) =

∑
k λ

2
kδ(ω − ωk). Moreover, it has become stan-

dard to classify the oscillator bath according to the power
law behavior of J(ω) = ωs at zero frequency into sub-
ohmic (s < 1), ohmic (s = 1) and superohmic (s > 1). In
order to avoid ultraviolet singularities the spectral func-
tion must be equipped with a high frequency cuto� ωc.
For an ohmic bath J(ω) = 2γω, and the dynamics of
the spin depends on the value of the dimensionless pa-
rameter γ. For γ < 1/2 the system is in the weak cou-
pling regime, characterized by underdamped Rabi oscil-
lations of ground state expectation values and correla-
tion functions of the spin observables. At γ = 1/2 a
crossover takes place from underdamped to overdamped
oscillations. Formally, the Rabi frequency becomes in�-
nite. However, the e�ective tunneling rate is still non-
-zero. This crossover is in nature very similar to the
crossover from underdamped to overdamped oscillations
of the harmonic oscillator. Finally, for γ = 1 the e�ective
tunnelling rate becomes strictly zero. The reduced den-
sity matrix of the spin is ρS = 1

212. This means we have
a twofold degenerate ground state, one with the particle
localized in the left and one with the particle localized in
the right well. The two ground states clearly break the Z2

parity-symmetry of the system and are separated by an
in�nite energy barrier. Thus the criteria of a quantum-
-phase transition are met. The phase transition is smooth
in the thermodynamical quantities and is therefore of the
Kosterlitz�Thouless (KT) type.
The quantum phase transition at γ = 1 which sepa-

rates a localized phase from a delocalized phase, is an
extreme case of decoherence. The reduced density ma-
trix of the spin is strictly diagonal in the pointer basis.
Thus in the language of quantum measurement theory
the Bosonic modes provide a complete measurement of
the Ŝz component of the spin, which behaves like a clas-
sical binary random variable.

Fig. 2. On the left RNG-�ow in the γtot�h plane for the
asymmetry angle θ = 0 corresponding to a single baths
TLS. The �ow is described by Eq. (3). On the right the
RNG-�ow and for symmetric coupling, θ = π/4. The
�ow is described by Eq. (6) with θ = 0.

This phase transition was �rst discovered by Ander-
son and Yuval [11, 12] in a perturbative renormalization

group analysis. There the small parameter is not the
interaction strength but the ratio h = ∆/ωc. The renor-
malization group (RNG) equations are

dγ

dl
= −h2γ, dh

dl
= −(1− γ)h, (3)

with l = − lnωc. The �ow is depicted on the left hand
side (l.h.s.) of Fig. 2. It is seen that for γ > 1 the dimen-
sionless tunneling rate h �ows to zero for γ > 1 and it
�ows to in�nity for γ < 1. This latter behavior is clearly
unphysical. The breakdown of the RNG �ow however is
not surprising, since as h increases the condition h � 1
under which the Eqs. (3) were derived is not ful�lled any
more. The common estimate ∆r/∆ = hγ/(1−γ) for the
renormalized tunnel matrix element was found by Silbey
and Harris [13] by di�erent methods.

2. The 2 bath two level system (2BTLS)

In the introductory section the Kosterlitz�Thouless lo-
calization phase transition in the spin-boson model was
physically interpreted as a maximal e�cient measure-
ment of the particle's position. With respect to this in-
terpretation a natural question arises: If in the spin bo-
son model the Ŝz component is measured by the oscillator
bath. What happens if a second bath couples to a di�er-
ent spin operator Ŝy? Since the two environments si-
multaneously attempt to measure two non-commutative
observables, which is impossible due to Heisenberg's un-
certainty principle, it is intuitively clear that in some
form cancellations must take place.
These cancellations were indeed observed in a vari-

ety of di�erent systems as a two-level system (TLS)
coupled to two oscillator bath [14�17] or to two spin-
-baths [18], a harmonic oscillator coupled to two oscil-
lator bath [19�22] in spin-lattices [23] or the Josephson
networks [24]. The relation to two channel Kondo physics
was already pointed out in [14, 25, 26]. In [14] the notion
frustration of decoherence was coined for e�ects which
are ascribed to the competition and mutual cancellation
of two environments, which couple to non-commuting ob-
servables of a central system. In the following we review
the most notable e�ects of quantum frustration on the
example of a TLS which couples to two oscillator baths
(2BTLS) and brie�y touch on the quantum frustrated
harmonic oscillator. The Hamiltonian of the 2BTLS is
given by (~ = 1):

Ĥ = Ĥ0 + ĤI, Ĥ0 = −∆Ŝx+
∑
k

ωkâ
†
kâk+

∑
l

νlb̂
†
l b̂l,

ĤI =
∑
k

λk(âk + â†k)⊗ Ŝz − i
∑
l

µk(b̂l − b̂†l )⊗ Ŝy.
(4)

As in the case of a single bath two-level system we fo-
cus on ohmic baths. The two baths are described by two
dimensionless coupling constants γa and γb and by a cut-
o� frequency ωc. In view of the foregoing discussion it
is useful to introduce a total coupling parameter and an
asymmetry angle according to

γtot = γa + γb, θ = arctan
√
γb/γa, (5)

such that θ = π/4 if the spin couples with the same cou-
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pling strength to both bath and θ = 0 if the spin couples
tto a single bath. The KT phase transition mentioned
in the introduction takes place at the point (1, 0) in the
γtot�θ plane. In Ref. [14] the RNG equation correspond-
ing to Eqs. (3) were derived for the 2BTLS for general
γtot and θ. We state them here in terms of the asymme-
try angle θ and the total coupling strength γtot:

dθ

dl
=
γtot
2

[1− sin(2θ)− cos(2θ)] ,

dγtot
dl

= −γ2tot sin2(2θ)− γtoth2,

dh

dl
= (1− γtot)h. (6)

For γtot 6= 0 the �ow of θ has two �xed points at θ = 0
and at θ = π/4. The �xed point at θ = 0 is stable, the
�xed point at θ = π/4 is unstable. For θ = 0 the RNG
equations for γtot and h = ∆/ωc reduce to Eq. (3).

In Fig. 2 the RNG �ow is plotted for θ = 0 and for
θ = π/4. Whereas for a single bath (θ = 0) h �ows to
zero for γtot > 1 and to in�nity for γtot < 1 for symmet-
ric coupling h �ows to in�nity for arbitrary γtot. Thus
at the symmetric point no quantum-phase transition oc-
curs for arbitrary strong �nite overall coupling strength.
This is in accordance with the physical interpretation
that two observers cannot measure two non-commuting
observables at the same time. This is by now the most
striking signature of quantum frustration. The question,
whether for an arbitrary asymmetry angle 0 ≤ θ ≤ π/4
a phase transition occurs and for what γtot is delicate
and cannot be answered by an analysis of the �xed point
manifold of Eqs. (6), for one reason because, as men-
tioned before, these equations do not yield the correct
weak coupling �xed point for h.

In Refs. [14, 15] equilibrium correlation functions were
calculated by a numerical renormalization group method.
Also these quantities feature signatures of quantum frus-
tration. As pointed out in the introductory section in
the single bath spin boson model the equilibrium corre-
lation functions exhibit a crossover from overdamped to
underdamped oscillation at γ = 1/2. This crossover can
be seen in the behavior of the transverse susceptibility

χzz(ω) = − i

∫ ∞
0

dt

2π
e iωt 〈[Sz(0), Sz(t)]〉 , (7)

respectively of its imaginary part χzz = χ′zz + iχ′′zz. For
vanishing coupling strength γ = 0 the quantity χ′′zz/ω
exhibits a delta peak at bare tunneling rate ∆. As γ in-
creases this peak broadens and the maximum moves at
∆r towards lower frequencies. Finally, at the crossover
γ = 1/2 the peak at ∆r disappears completely and the
function has its maximum at ω = 0.

In Fig. 3 the function χ′′zz/ω is plotted for θ = π/4
for several values of γtot. As expected the peak broadens
however it never disappears even for values of γtot > 1/2.
This means that the crossover from overdamped to un-
derdamped is absent for symmetric coupling, which is
another signature of quantum frustration. Both parts
in Fig. 3 show the same quantity, obtained by di�erent

Fig. 3. Imaginary part of the transverse suceptibility
χ′′(ω) for di�erent values of the overall coupling. The
�gure on the l.h.s. is obtained from a numerical renor-
malization group analysis. It is taken from Ref. [15].
The �gure on the r.h.s. is obtained from the �ow equa-
tion approach. It is taken from Ref. [17]. The values for

γtot are γtot = 0.1
√
2n, 1 ≤ n ≤ 10, from top to bottom

(online color: from dark-colored to light-colored). The
number of bath modes is 400, ∆/ωc = 1/10.

methods, see end of Sect. 4.
In Refs. [19�21] the dissipative harmonic oscillator was

investigated, where the central harmonic oscillator cou-
ples with position and momentum to two independent os-
cillator baths. The Hamiltonian is obtained from Eq. (4)

by the replacement Ŝz → q̂, Ŝy → p̂ and Ŝx → 1
2 (q̂2+ p̂2).

This substitution is physically equivalent to a replace-
ment of the two level system by an N -level system and
taking the limit N to in�nity. Large spins occur for in-
stance in magnetic particles [27].
For the harmonic oscillator signatures of quantum frus-

tration were found albeit in a weaker form than for the
2BTLS: the crossover from underdamped to overdamped
equilibrium oscillations which occurs for a single bath
at coupling strength γ = 1 never occurs for symmetric
coupling.
Since the system is exactly solvable also relaxation to

equilibrium could be studied rigorously [20]. For a de-
coupled initial state the expectation values of the central
oscillator incur important initial slips on the time scale
of the inverse cuto� frequency [28] causing an almost
complete decay of coherence on this time scale. These
initial slips become more pronounced for a coupling to
two baths leading to the conclusion that no features of
quantum frustration can be observed in the relaxation of
the dissipative harmonic oscillator. The non-equilibrium
dynamics of the 2BTLS will be addressed in Sect. 5.

3. Hamiltonian �ow equations

A modern method to investigate the 2BTLS is the
method of Hamiltonian �ow equations. This method
was developed in the beginning of the nineties by Gªazek
and Wilson [29] and by Wegner [30]. It provides a well
controlled way to approximately calculate the spectrum
of a Hamiltonian, which can in principle be arbitrarily
complicated. It is similar in spirit of a renormaliza-
tion group transformation. But, whereas renormalization
group methods are mainly designed to approximate the
spectrum in the long wavelength sector, the �ow equa-
tions yield approximate results for the total spectrum.



1056 H. Kohler

We outline the method following mainly the ideas of Weg-
ner [30, 31].
Let us consider an equivalence class of Hamiltonians

which are related via a one-parameter unitary transfor-
mation to the original one

Ĥ(l) = Û(l)ĤÛ†(l). (8)

The parameter l which de�nes the unitary transformation
is called �ow parameter. The derivative of this equation
with respect to the �ow parameter yields the �ow equa-
tions

dĤ(l)

dl
=
[
η̂(l), Ĥ(l)

]
, (9)

where η̂(l) = −Û(l) d
dl Û

†(l) is the generator of the �ow.

The generator is chosen such that the Hamiltonian Ĥ(∞)
obtains a particular simple form. Wegner's choice, which
will be called canonical generator in the following is
η̂ = [Ĥ0, Ĥ], where Ĥ0 is the non-interacting part of the

full Hamiltonian. This choice for Ĥ0 is not mandatory
but convenient. In principle other choices are possible.†

To see why the canonical generator is so convenient it
su�ces to look at the evolution of ĤI = Ĥ−Ĥ0. For sim-
plicity we assume Ĥ to be traceclass, then F = Tr(ĤI)

2

is well de�ned and obeys the �ow equation

dF (l)

dl
= −2

∑
k,k′

(εk − εk′)2 |Ĥkk′ |2, (10)

where εk are the eigenvalues of Ĥ0. If Ĥ0 is non-
-degenerate the right hand side is always smaller than one
and consequently liml→∞ F (l) = 0. Therefore Ĥ(∞) =

Ĥ0(∞), or in other words the initial Hamiltonian Ĥ(0)
was diagonalized.
Maybe the best way to understand the idea of the

method is to work it out in the most simple example.
To this end we assume the Hamiltonian to be just a 2×2
matrix Ĥ = EŜz +V Ŝx, which has obviously eigenvalues
E± = ±

√
E2 + V 2/2. Let us see how this result comes

about within the �ow equation approach. First the com-
mutator of the diagonal part of the Hamiltonian, in this
case Ĥ0 = EŜz, with the full Hamiltonian is calculated.
It yields the canonical generator η̂ = [Ĥ0, Ĥ] = iEV Ŝy.
Then the �ow equation is

dĤ(l)

dl
=[η̂(l), Ĥ(l)]=V 2(l)E(l)Ŝz−V (l)E2(l)Ŝx, (11)

which yields two coupled non-linear di�erential equations
for the two parameters E(l) and V (l):

dE(l)

dl
= V 2(l)E(l),

dV (l)

dl
= −V (l)E2(l). (12)

Although these equations can be solved, this is not nec-
essary, since we need to know only the values of E(∞)
and V (∞). Observing that E2(l) +V 2(l) is constant un-

†See for instance Ref. [32], where �ow equations were applied
to the single bath spin boson model. In this work not the free
system served as Ĥ0 but the interacting one at the Toulouse point
γ = 1/2, where the system is integrable.

der the �ow E2(∞) = E2 +V 2, which is the exact result,
if V (∞) = 0. An explicit calculation yields indeed

V (l) =
V 4(0) + E2(0)V 2(0)

V 2(0) + E2(0)e2l(E2+V 2)
. (13)

This means that V (∞) is indeed zero as long E 6= 0.
This simple example demonstrates that Hamiltonian �ow
equations yield exact results as long as no further approx-
imations are made. However, Eq. (11) is special in the
sense that on the l.h.s. and the r.h.s. the same spin op-
erators appear, allowing for a closed set of di�erential
equations for the coe�cients. For a general interacting
many-body Hamiltonian the commutator on the r.h.s. of
Eq. (9) creates interaction terms not present in the orig-
inal Hamiltonian. In principle, one has two options to
overcome this problem. One can either include the newly
generated terms right from the outset in a more general
original Hamiltonian. This leads unavoidably to a larger
and larger number of parameters and thus to a larger
and larger number of ODE's to be solved. The second
option consists in neglecting certain terms created by the
commutator. In practice one employs a combination of
both options.

In the case of the 2BTLS Hamiltonian it is readily seen
that the double commutator [[Ĥ0, Ĥ], Ĥ] creates new in-
teraction terms. On the one hand, these are terms pro-

portional to Ŝz ⊗ b̂l and i Ŝy ⊗ âk, respectively, to their
Hermitian conjugates. On the other hand, there arise
terms proportional to Ŝx ⊗ ĉk ĉk′ , where the operator ĉ
can be any of the creation and annihilation operators

â†, b̂†, â, b̂. These terms are included into an initial Ĥ
with a more general interaction part

Ĥenh
I =

1

2
ĤI − i

∑
k

αkŜy ⊗ âk +
∑
l

βlŜz ⊗ b̂l

+ Ŝx ⊗
∑
k,l

(
sklâ

†
k b̂l + tklâk b̂l

)
+ Ŝx ⊗

∑
k,k′

(
σ
(a)
kk′ â

†
kâk′ + τ

(a)
kk′ âkâk′

)
+ Ŝx ⊗

∑
l,l′

(
σ
(b)
ll′ b̂
†
l b̂l′ + τ

(b)
ll′ b̂lb̂l′

)
+ H.c. (14)

The canonical generator and the double commutator
[[Ĥ0, Ĥ], Ĥ] must now be calculated with the enhanced
interaction term (14). The double commutator yields
terms which contain three or four creation or annihila-
tion operators. These terms are not included in a yet
more general initial Hamiltonian but are replaced by their
expectation value with respect to the non-interacting
ground state. Thereby a closed set of coupled ODE's is
obtained for the altogether 1 + 4N + 2N(4N + 1) param-

eters ∆, αk, βl, λk, µl, σ
(a)
kk′ , σ

(b)
ll′ , τ

(a)
kk′ , τ

(b)
ll′ , skl and tkl.

Here N is the number of bath modes which is assumed to
be the same for both baths. Let us note that in the ap-
proximation we used to close the equations, the frequen-
cies of the bath modes ωk and νl do not change under
the �ow. Typical values for the number of bath modes,
which are feasible without too much numerical e�ort, lie
between N = 500 and N = 1000. Although the �ow
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equation can sometimes be treated analytically [17, 33�
35], the large number of ODE's to be solved renders the
method of �ow equations essentially a numerical method.
A comprehensive account on Hamiltonian �ow equations
in many-body physics was recently given by Kehrein [35].

4. Equilibrium properties

The �ow equations for the 2BTLS are solved numeri-
cally by an adaptive step-size fourth order Runge�Kutta
algorithm. It is numerically checked that all parameters
of Ĥenh

I (l) are zero at the endpoint of the integration.‡

Thus that

Ĥ(∞) = −∆(∞)Ŝx +
∑
k

ωkâ
†
kâk +

∑
l

νlb̂
†
l b̂l. (15)

Fig. 4. Renormalized tunnelling matrix element ∆r as
a function of the angle θ de�ned in Eq. (5) the main
text, the total coupling strength is γtot = 0.1 (crosses,
yellow), γtot = 0.3 (empty circles, orange), γtot = 0.5
(�lled boxes, red), γtot = 0.8 (empty boxes, dark red)
and γtot = 1 (�lled circles, full black line). The cuto�
frequency is ωc = 10∆. The number of bath modes is
N = 1000. Figure taken from Ref. [17].

In Fig. 4 the renormalized tunnel matrix element ∆r ≡
∆(∞) is plotted as a function of the asymmetry angle
θ de�ned in Eq. (5) for di�erent overall coupling γtot.
Whereas for small overall coupling γtot the renormalized
tunneling matrix element ∆r is almost independent of θ,
it is nicely seen that if γtot becomes larger ∆r is protected
by a symmetric coupling. For γtot = 1, ∆r renormalizes
to zero within numerical accuracy. If the overall coupling
is increased further, ∆r renormalizes to zero already for
a �nite asymmetry angle θ. This allows us to plot a
phase diagram in the γtot�θ plane where the localized
phase (∆r = 0) is separated from the delocalized phase
(∆r > 0) by a critical line. The phase diagram is plotted
in Fig. 5. The critical line crosses the abscissa not at
γtot = 1 but at about 0.85. This o�set can be systemat-
ically improved by increasing the number of modes and
the endpoint of the integration. For overall couplings
large than γtot ≈ 2.5 the integration routine becomes

‡Actually not all parameters �ow to zero, but the diagonal

terms σ
(a)
kk and σ

(b)
ll remain �nite. However their values are so

small that for all practical purposes they can be neglected.

Fig. 5. Phase diagram of the 2BTLS ground state in
the γtot�θ plane. The line indicates the critical asym-
metry angle, which separates the localized from the de-
localized phase. The critical angle was determined for
N = 800 bath modes. The cuto� frequency is ωc = 10∆.
The �gure is taken from Ref. [17].

numerically unstable. Despite the numerical inaccura-
cies the phase diagram clearly shows that the delocalized
phase is stable against small variations of the asymmetry
angle θ and for small asymmetry the delocalized phase
extends in a smooth fashion into the region γtot > 1.
Within our approach equilibrium expectation values of

an arbitrary operator can be calculated. To this end the
operator is transformed by appropriate �ow equations
into the basis, where Ĥ is diagonal. As an example let
us consider the spin operator Ŝx. The operator is ex-
panded as

Ŝx(l) =
h0
2
12 + hx(l)Ŝx + Sz ⊗

[∑
k

χ
(a)
k

(
âk + â†k

)
+
∑
l

χ
(b)
l

(
b̂l + b̂†l

)]
+ iSy ⊗

[∑
k

ζ
(a)
k

(
âk − â†k

)
+
∑
l

ζ
(b)
l

(
b̂l − b̂†l

)]
. (16)

The commutator [η̂, Ŝx(l)] is calculated and all terms con-
taining two or more creation or annihilation operators are
neglected. Thereby a set of ODE's is obtained for h0(l),

hx(l), χ
(a)
k (l), χ

(b)
l (l), ζ

(a)
k (l), ζ

(b)
l (l), which are solved

numerically. Since time evolution is trivial in the basis,
where Ĥ is diagonal, an arbitrary equilibrium correlation
function of Ŝx can be calculated from the knowledge of

h0(∞), hx(∞), χ
(a)
k (∞), χ

(b)
l (∞). The other spin opera-

tors are treated similarly. On the r.h.s. of Fig. 3 the result
obtained by the �ow equation method for the transverse
susceptibility, de�ned in Eq. (7) are depicted. They agree
qualitatively with the results obtained in Ref. [15] by the
numerical renormalization group.

5. Non-equilibrium: thermalization
and decoherence

Recently, the method of Hamiltonian �ow equations
has been extended to systems in non-equilibrium [36, 37].
The main idea of the calculation is sketched in Fig. 6.
An arbitrary operator is �rst transformed by Û(∞) into
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the basis where Ĥ is diagonal and time evolution is triv-
ially propagated by Ĥ(∞). Afterwards the time evolved
operator is numerically transformed back in the original
basis, thereby an approximate solution of the Heisenberg
equation is obtained. The expectation value of the op-
erator with respect to an arbitrary initial state is then
calculated without further problems.

Fig. 6. Sketch of the calculation of a Heisenberg oper-
ator. First the operator is transformed into the basis
where Ĥ is diagonal. Then it is propagated in time and
numerically transformed back afterwards.

We apply this procedure to the decoupled non-
-equilibrium initial state described by the density matrix

ρinit = ρS(0)⊗ ρ(a)eq ⊗ ρ(b)eq , ρS(0) =

(
1

2
12 + Ŝz

)
.

(17)

Decay of quantum coherence is monitored by the purity

P(t) =
1

2
12 + 2〈Sx(t)〉2 + 2〈Sy(t)〉2 + 2〈Sz(t)〉2. (18)

Dissipation is described by the time evolution of the sys-
tem Hamiltonian, i.e. the relaxation of 〈Ŝx(t)〉 to its equi-
librium value. Due to the reduced Hilbert space dimen-
sion of the system dissipation and decoherence as quanti-
�ed by the purity are not independent. It is thus useful to
de�ne a parallel P‖ = 1

212 + 2〈Sx〉2 and a transverse pu-

rity P⊥ = 2〈Sy〉2+〈Sz〉2. Then P‖ is associated with dis-
sipation and P⊥ with decoherence. In the Born�Markov
approximation the Bloch equations are obtained for the
expectation values of the spin operators. They predict
an exponential decay for both P‖ ∝ exp(−t/T1) and

P⊥ ∝ exp(−t/T2) with decay rates T−11 = 2π∆(γa + γb)
and T2 = 2T1. The decay rate shows in the Born�Markov
approximation no dependence on the asymmetry angle θ.
Within the Markov approximation it is possible to �nd

higher order corrections to T1 and T2 the exponential de-
cay remaining una�ected. However for small times of
order of the inverse cuto� frequency the Markov approx-
imation is not valid. A small time expansion yields for
the transverse purity for symmetric coupling (θ = π/4)
a quadratic decay

P⊥(t) =
1

2
− t2

4τ2
+O(t3), τ−2 = (γa + γb)ωc, (19)

where τ is the so-called quantum Zeno time. On this time
scale the decay of P⊥ deviates from exponential and be-
comes dependent of the cuto� frequency.
In Fig. 7 the transverse purity as calculated by the

�ow equations is plotted for symmetric coupling and for

di�erent cuto� frequencies. For small times the numeri-
cal results �t nicely the quadratic small time expansion
(upper �gure in Fig. 7). Moreover, one observes that the
expansion is good for short time scales of order ω−1c . Af-
terwards, P⊥ exhibits an oscillatory crossover to the ex-
ponential decay predicted by the Bloch equations. The
frequency of the oscillations scales with ωc. The oscilla-
tions rapidly attenuate on a time scale of less than one
period of the Rabi oscillations. This rather surprising
oscillatory behavior of the transverse purity was to my
best knowledge �rst reported in [17].

Fig. 7. Decay of the transverse purity from the initial
state (17) for symmetric coupling, i.e. asymmetry angle
θ = π/4, for three di�erent cuto� frequencies ωc = 20∆
(black), ωc = 10∆ (red) and ωc = 7.5∆ (yellow) on
small (above) and on intermedium (below) time scales.
The calculations were performed with 250 bath modes.

A more complete analysis reveals [17] that for arbi-
trary asymmetry angle 0 ≤ θ ≤ π/4 and for a more gen-

eral initial state ρS(0) =
(

1
212 + cos θ′Ŝz + sin θ′Ŝz

)
the

decay of P⊥ depends crucially on both angles θ and θ′

and on details of the cuto� function. Like for the quan-
tum frustrated harmonic oscillator no universal features
of quantum frustration can be identi�ed.

6. Summary and outlook

Quantum frustration occurs when non-commuting ob-
servables couple to two independent heat baths. In the
past several real world physical systems were proposed,
which are expected to exhibit this e�ect. Most notably
it was proposed as cooling mechanism [38]. Already
in [15] for the 2BTLS the relation of quantum frustra-
tion to the Mermin�Wagner theorem [39] was pointed
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out. A similar reasoning holds for the quantum frus-
trated harmonic oscillator. At the symmetric point both
systems have a U(1)-symmetry generated by the operator

ĤS +
∑
k(âkb

†
k + b̂kâ

†
k), where ĤS = Ŝx for the 2BTLS

and ĤS = 1
2 (p̂2 + q̂2) for the quantum frustrated har-

monic oscillator. If the Hamiltonians are interpreted as
one-dimensional �eld theories, the Mermin�Wagner the-
orem might be applied, which states that for low dimen-
sional �eld theories a continuous symmetry cannot be
broken spontaneously. Interestingly this line of arguing
holds even if only a single bath is involved. As a word
of caution one has to mention that the Mermin�Wagner
theorem holds only for non-zero temperatures and quan-
tum phase transitions, as considered here, are strictly
speaking not forbidden.
Localization is the phenomenon, where � triggered by

some mechanism � a preferred basis is singled out, in
which the eigenfunctions are localized in a small region
of the Hilbert space. In case of disorder induced localiza-
tion this is either the position basis or for dynamical lo-
calization [40] the energy basis. For interaction induced
localization it is the pointer basis. Thus it might not
come as a surprise that localization is suppressed if the
operator de�ning the preferred basis is connected to its
canonical conjugate by a continuous symmetry. From
this point of view it is rather surprising that inelastic
scattering leads to a reduction of the localization length
and not to an enhancement, since both, interaction and
disorder, seem to prefer the position basis.
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