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A model consisting of a string embedded in an elastic medium and terminated by a harmonic oscillator has been
studied in the frequency and time domains to elucidate the physical e�ects of supersonic and subsonic leaky waves
as well as that of true surface waves. A supersonic leaky wave manifests itself by a resonant maximum of the local
density of states within the band of bulk waves and by an anomalous dispersion of the real part of the frequency
dependent response function. The time domain impulse response then contains mainly resonant contribution from
the poles of the response function in analogy to ordinary resonances. True surface waves show generally analogous
behaviour. Here, however, the phenomenon is governed by dissipation mechanisms di�erent from the radiation
into the bulk. An important di�erence is that the impulse response contains equilibrated contributions due to the
poles and due to the stop frequency gap in the case of true surface waves. The main manifestation of a subsonic
leaky wave, i.e. a surface resonance with the frequency situated in the stop gap, is a sharp peak of the real part of
the frequency-dependent response function just at the bottom of the bulk waves band. This is in certain analogy
with a large reactive power in electric circuits. A strong destructive interference of the resonant part of the impulse
response with the part due to the gap makes the time domain response fast attenuated.
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1. Introduction

Defects of spatial periodicity in solids may give rise
to localized excitations in addition to the Bloch waves
propagating in the bulk of the material. No simple rules
exist to predict if and in what number such excitations
will really occur given the equations of motion for the
bulk and those describing the boundary conditions im-
posed by the physical properties of the defect [1]. Gen-
erally, the excitations with frequencies outside the bands
of bulk waves show in�nite life times because no mech-
anism allows their energy to be radiated into the bulk.
In contrast, the radiation by the bulk waves is usually
responsible for an evanescent character of the defect ex-
citations with frequencies situated within the bulk bands.
In cases where the defect is a surface the in�nitely lived
excitations propagate along the surface and, therefore,
are called true surface waves (TSW). In turn, the excita-
tions of �nite life times are termed pseudo surface waves
(PSW), surfaces resonances (in some analogy with the
resonances that are distinguished from particles in the
high energy physics) or surface leaky waves to account
for the �leakage� of energy into the bulk.

There are, however, examples known of the true sur-
face waves within bulk bands. Such e�ects re�ect a de-
coupling of the surface excitation from the bulk waves
[2, 3]. Interestingly enough, it may also happen that the
real part of the frequency of a surface leaky wave lie out-
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side the bulk band, even though the imaginary part of the
frequency, i.e. the inverse of the life time, may be di�er-
ent from zero. If excitations of this kind occur below the
bands of the bulk acoustic waves they are called subsonic
surfaces resonances or subsonic leaky waves. A number
of examples of this type have been found on the inner
surface of cylindrical cavity in an elastic medium [4]. It
might seem that the limit of the imaginary part of fre-
quency of a subsonic surface leaky wave tending to zero
corresponds to a true surface wave. This is, however,
not the case, because the amplitude of a leaky wave in-
creases with the depth into the bulk up to the wave front,
whereas the amplitude of a true surface wave decreases
that is equivalent to it being a localized excitation.

Fig. 1. Model: string of sound velocity c embedded in
an elastic medium producing a stop frequency gap below
frequency ω0 terminated by a mass m in a harmonic
potential with force constant β. In modeling of true
surface waves additional damping of the end oscillator
is considered.
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Now it is interesting to study the behavior of systems
showing all the kinds of excitations under external per-
turbation both in the frequency and time domain. The
model treated in this note is a semi-in�nite string em-
bedded in an elastic medium. It obeys, therefore, the
Klein�Gordon equation of motion [5]. A point-like har-
monic oscillator constitutes the termination of the string.
The system is schematically shown in Fig. 1. The band
of the bulk waves in the string is limited from below so
that there is a stop gap at su�ciently low frequencies.
The equations of motion are equivalent to those of a 2D
membrane displacing out of plane and terminated by a
straight edge of a non-zero linear density placed in an
external harmonic potential. The width of the gap then
is a function of the wave vector parallel to the edge [6].
Therefore, the solution of the present model gives at the
same time the solutions of the dynamics of a more general
two-dimensional system.

2. Response in frequency domain

The equation of motion of the string is

∂2u

∂t2
= c2

∂2u

∂y2
− ω2

0u, y > 0, (1)

where ω0 is the lower limit of the bulk band and c =
(T/ρ)1/2 is the short-wavelength limit of the phase sound
velocity in the string. The string is supposed to show a
linear homogeneous mass density ρ and to be subjected
to a tension T . ny solution of Eq. (1) can be composed
of harmonic waves of the form

u(y, t) = u0 exp(− iωt+ iky), (2)

where the wave vector is

k(ω) = ±1

c

√
ω2 − ω2

0 , if ω > ω0,

k(ω) = i
1

c

√
ω2
0 − ω2, if ω < ω0. (3)

In the case of an imaginary wave vector only one sign
should be considered for a real frequency ω to ensure a
decrease in amplitude with the depth y into the bulk.
The boundary condition at y = 0 is the Newton second

law for the oscillator attached to the string

∂2u

∂t2
= −β2u+

T

m

∂u

∂y

∣∣∣∣
y=0

+ f(t), y = 0. (4)

Here m is the mass and β is the eigenfrequency of the
oscillator while f(t) is an external perturbation counted
in the units of force per mass.
The problem is particularly simple in the frequency

domain, i.e. with the oscillating perturbation

f(t) = f0(ω) exp(− iωt). (5)

After all the transient e�ects die out the motion of the
end mass is also oscillatory

u(0, t) = u0(ω) exp(− iωt) (6)

and is related with the applied perturbation by the Green
function G(ω) also called response function

u0(ω) = G(ω)f0(ω), (7)

where

G(ω) =
1

β2 − ω2 − iγ(ω2 − ω2
0)

1/2
if ω > ω0,

G(ω) =
1

β2 − ω2 + γ(ω2
0 − ω2)1/2

if ω < ω0, (8)

where γ = T/mc.

Fig. 2. Typical analytical structure of the Green func-
tion of Eq. (8) and paths of contour integration for t < 0
(dashed line), t > 0 (solid line).

When analytically continued on the complex plane ω
the Green function shows four poles and a cut that can
be put between −ω0 and ω0 as shown in Fig. 2. The
position of the poles depends on the parameters of the
model. Of course the poles on the real axis correspond
to secular excitations (true surface waves) and those with
negative imaginary parts of frequency to �nite-lived reso-
nance excitations. A positive imaginary part of frequency
is not physically acceptable because it would imply an in-
�nite response in the long time limit. Given the complex
frequency of a pole one obtains the corresponding wave
vector of the excitation from the dispersion relation ac-
cording to Eq. (3).

3. Response in the time domain:

impulse response

The Green function of Eqs. (8) is the Fourier trans-
form of the response uimp(t) of the system to a delta-
-like force f(t) = δ(t) applied to the mass m as given in
Eq. (4). Thus, the kind of response, legitimately called
impulse response [7], is given by the integral uimp(t) =
1
2π

∫∞
−∞G(ω)e− iωtdω which can be calculated by con-

tour integration on the plane of complex ω. For t < 0
the contour should be closed on the upper half plane ω.
The encircled residues then turn out to vanish, which
re�ects the causality of the problem: no response can
precede the impulse. The integral obtained for t > 0
by closing the contour on the lower half plane consists of
two contributions. The contribution originating from the
poles has a simple analytical form of a sum of exponen-
tial functions e− iωnt (n = 1, 2 in terms of Fig. 2), where
the negative complex parts of the frequencies ωn ensure
a decrease in the response with time. The contribution
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originating from the �dog-bone� cannot be expressed an-
alytically. In fact it is proportional to a convolution of
a function (t) = 1

2π

∫ ω0

−ω0

√
ω2
0 − ω2 e− iωtdω = ω0

2t J1(ω0t)

with another exponentially decreasing function B(t) =
1
2π

∫∞
−∞

e− iωt∏4
n=1(ω−ωn)

dω which can be easily evaluated by

the contour integral (t ∈ −∞ . . .∞ in the convolution).
Therefore the resulting total impulse response is a de-
creasing function. In the limit ω0 → 0 one deals with
an ordinary damped oscillator. A non-zero stop band
ω0 > 0 corresponds to a speci�c damping in which the
higher frequencies are strongly damped in an analogy to
a low pass �lter. The model can also provide instance
of true surface (defect) waves. A possibility for that is
to put β = 0. With some additional damping of the
end oscillator the poles on the lower half plane occur on
the back Riemann surface leaf. Then the wave vector
acquires a positive imaginary part which corresponds to
an attenuated wave. The true surface wave is obtained
in the limit of the additional damping tending to zero in
which limit the poles on the back Riemann leaf approach
the real axis. The spatially attenuated character of the
waves is preserved in this limit.

4. Resonant response

In summary, one kind of resonances in the system un-
der study corresponds to poles situated on the front leaf
of the Riemann surface on the complex frequency plane.
Such resonances describe leaky waves. The real part of
the resonant frequency of such resonance above the lower
limit of the bulk band Reω1 > ω0 (in terms of Fig. 2)
mark supersonic leaky wave whereas Reω1 < ω0 is char-
acteristic of subsonic leaky wave. The fact that the res-
onances are situated on the front Riemann leaf indicates
a negative value of the imaginary part of the wave vec-
tor which amounts to an increase in amplitude with the
depth into the bulk. The resonant frequencies situated
on the back Riemann leaf in some proximity of the cut
correspond to true surface waves, possibly damped by
an additional viscous friction which is not explicitly in-
cluded in the present model but can be added to give
the resonance a �nite width. The right hand side of
the equation of motion (4) then contains an additional
term −γz ∂u∂t . In the limit of this friction tending to zero,
i.e. γz → 0, the resonance frequencies lie exactly on the
cut and the corresponding local density of states shows a
delta-like peak. The resonances are qualitatively di�er-
ent. The negative imaginary part of the wave vector of
the leaky waves, be they supersonic or subsonic, results
in an increase in the amplitude with the depth. There-
fore, the limit of vanishing imaginary part of frequency of
such waves corresponds to temporarily undamped solu-
tions that diverge with increasing depth. Such solutions
are, therefore, unphysical in this limit. In contrast, the
true surface waves, being the limit case of vanishing ad-
ditional damping are evanescent and have clear physical
meaning of localized excitations. Generally the most ef-
�cient way of exciting a resonance is to apply a signal

which is identical/proportional with/to the impulse re-
sponse. Since the applied frequency then is equal to the
frequency of the corresponding pole of the Green func-
tion, the response-to-signal ratio is in�nite. However,
because the signal itself is a decreasing function the re-
sulting response also tends to zero in the long time limit.
Mathematically the resonant response is a convolution of
the impulse response with itself. The response to a sig-
nal which is equal to the impulse response is called here
resonant response.

5. Examples and discussion

Figure 3 shows the impulse response (Fig. 3a) and
the resonant response (Fig. 3b) for a typical supersonic
leaky wave. The parameters of the system are Re(ω1) =
1.32958, Im(ω1) = −0.0709063, ω0 = 1, β = 1.11803,
γ = 0.15, m = 0.7. Figure 4 represents the response of
the same system in the frequency domain. In particular,
the red (continuous) line gives the local density of states
(LDOS) which is proportional to the power transmitted
to the system by the oscillating applied perturbation. In
terms of the electric circuits theory LDOS corresponds
to the true power or dispersive power [7]. A resonant
maximum visible in the LDOS is centred around the res-
onant frequency and its width is determined by the ef-
fective damping constant γ. The real part of the Green
function, here represented by a green (dashed) line, is
a reactive power, indicating the exchange of power be-
tween the system and the stimulus within each period of
oscillations without, however, any net work transmitted
to the system. The ratio of the response amplitude to
the amplitude of the stimulus is the hypotenuse of the
power triangle and is represented here by a blue (dotted)
line. s one can see, the behaviour of all the quantities
resembles that of an ordinary resonance: the maximum
of LDOS coincides with zero of the reactive power. The
response in the time domain (Fig. 3b) shows a maximum
characteristic for the damped resonance response. The
response-to-signal ratio in the maximum depends on the
value of the e�ective damping constant γ. Interesting is
that the contribution from the dog-bone is hardly present
in this case, the majority of the response being provided
by the residue part.
The case of a true surface wave arti�cially damped

by an additional viscous friction γz = 0.05 is illustrated
in Figs. 5 and 6. The parameters of the model are
Re(ω1) = 0.919464, Im(ω1) = −0.0146668, ω0 = 1,
β = 0, γ = 1, m = 0.5. The strong peak in LDOS
in Fig. 6 corresponds to zero of the reactive power as it
should be in any damped resonance. The time-domain
impulse (Fig. 5a) and resonant response (Fig. 5b) show
interesting constructive interference between the contri-
butions from the residues and from the dog-bone. This
interference is at the origin of the maximum of the res-
onant response being about 15 times stronger than the
amplitude of stimulus. This is just the most common
case whereof surface wave, e.g. the Rayleigh wave, whose
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Fig. 3. Impulse response (a) and resonant response (b)
in case of supersonic leaky wave (Re(ω1) = 1.32958,
Im(ω1) = −0.0709063, ω0 = 1, β = 1.11803, γ = 0.15,
m = 0.7).

Fig. 4. Frequency response in case of supersonic leaky
wave (Re(ω1) = 1.32958, Im(ω1) = −0.0709063, ω0 = 1,
β = 1.11803, γ = 0.15, m = 0.7).

propagation is only a�ected by losses not related with the
radiation of the power into the bulk. In both above cases
the maximum of amplitude coincides with the maximum
of LDOS.

The most interesting case is a subsonic leaky wave as
shown in Figs. 7 and 8. Here the parameters of the system
are Re(ω1) = 0.979507, Im(ω1) = −0.0339038, ω0 = 1,
β = 1.04881, γ = 0.5, m = 1.02. The LDOS has no
longer a maximum within the bulk band, then shows a
strong edge singularity at the lower limit of the band as
it is seen in Fig. 8. However, the reactive power does
not show a zero there. Instead, a sharp maximum of the
reactive power occurs at the edge of the bulk band.

The impulse response and, consequently, the resonant
response shows a kind of destructive interference between
the contributions from the residues and from the dog-
-bone. s a result the response is weakened, but an enve-

Fig. 5. Impulse response (a) and resonant response
(b) in case of true surface wave arti�cially damped
(Re(ω1) = 0.919464, Im(ω1) = −0.0146668, ω0 = 1,
β = 0, γ = 1, m = 0.5, additional damping constant
γz = 0.05).

Fig. 6. Frequency response in case of true surface wave
arti�cially damped (Re(ω1) = 0.919464, Im(ω1) =
−0.0146668, ω0 = 1, β = 0, γ = 1, m = 0.5, additional
damping constant γz = 0.05).

lope with a maximum is still clearly visible. The response
also shows a waving of its amplitude whose e�ect is at-
tributed to beats between the frequency of the resonance
and that of the lower edge of the bulk band. In this ex-
ample the life time of the subsonic leaky wave is long in
comparison with the previous one. This manifests itself
in a rather high amplitude of the response to a sinusoidal
perturbation of frequency ω = Re(ω1). The majority
of the response is, however, in-phase with the perturba-
tion, that corresponds to the vanishing of the LDOS for
Re(ω1) < ω0. Physically it means that although the im-
pulse response is not very strong, the amplitude excited
by the resonance frequency can be very high for the har-
monic excitation. This may have signi�cance in practical
applications of such resonant systems.
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Fig. 7. Impulse response (a) and resonant response (b)
in case of subsonic leaky wave (Re(ω1) = 0.979507,
Im(ω1) = −0.0339038, ω0 = 1, β = 1.04881, γ = 0.5,
m = 1.02).

Fig. 8. Frequency response in case of subsonic leaky
wave (Re(ω1) = 0.979507, Im(ω1) = −0.0339038, ω0 =
1, β = 1.04881, γ = 0.5, m = 1.02).

6. Conclusions

There exists a qualitative di�erence between super-
sonic leaky waves and true waves, on the one hand, and
subsonic leaky waves, on the other hand. Whereas there
is a resonant maximum in the local density of states ac-
companied by a zero of the real part of the frequency de-
pendent response function in the former case, the LDOS
is signi�cantly shifted towards the lower border of the
bulk band in the latter case but no maximum is present
within the bulk band. The most pronounced e�ect of a
subsonic leaky wave is a sharp maximum of the real part
of the response function at this lower border of the bulk
band. The system then is analogous to electric systems
with high reactive power. A consequence of it is that the
vibrational frequency at the defect can be rather high.
A destructive interference of the resonant and �dog-bone�
contributions of the impulse response in the case of the
subsonic leaky wave makes the time domain response un-
expectedly weak.
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