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1. Introduction

The phenomenon of ferroelectricity may essentially in-
volve two mechanisms. In simple ionic crystals, for exam-
ple BaTiO3, SrTiO3, KTaO3 [1�8], the spontaneous po-
larisation results from mutual displacements of the posi-
tive and negative charges of atomic ions. Then the phase
transition is accompanied with a soft phonon mode in-
volving displacements of atoms and one speaks of dis-
placive phase transition. The saturation of the order pa-
rameter in displacive phase transitions has some quan-
tum grounds, such as a freezing of �uctuation degrees of
freedom [1�7], or it can be a result of an anharmonicity
of local potentials and, usually, it takes place in very low
temperatures, lower than 50 K that is far away from the
critical temperatures [1�7]. In more complex molecular
crystals (for example Rochelle salt, MAPCB, MAPBB,
DMACA, DMABA, TMACA, etc. [8�34]) phase transi-
tions arise from orientational ordering of permanent dipo-
lar moments of molecules having a rotational freedom in
high temperatures. The orientational disorder is usually
a result of jumps among few discrete minima of energy,
which minima become inequivalent in the ordered phase.
In such cases one deals with an order�disorder phase tran-
sition. Then the saturation of the order parameter cor-
responds to all the permanent dipoles oriented parallel
[8, 12, 16].

The rate at which the spontaneous polarisation attains
its saturation varies from material to material. The �rst
reason for that comes from the number of accessible equi-
librium states of the ions (see the Potts model [8, 12, 35]).
Another reason for that lies in a coupling with additional
degrees of freedom forming what is known as secondary
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order parameters and it takes place in temperatures a
few dozens below the critical temperatures that is a few
times higher than for displacive phase transitions. In
fact any realistic example is a mixture of both mecha-
nisms, because even the positions of single atomic ions
may show a number of discrete minima of energy and an
orientational ordering is often coupled with translational
displacements of the mass centres of the molecular ions
[4, 6, 13, 36, 37].

The equations of state based on the scaling hypothesis
[8, 12, 35], and references cited therein, reproduce ade-
quately the power law behaviour of the order parameter,
of the susceptibility as well as of the speci�c heat and
entropy in the vicinity of the critical point (for example
see Refs. [8, 12, 35]) with the e�ective critical exponents
usually di�erent from what is known as classical and uni-
versal critical exponents [13]. The di�erence originates
from experimental conditions such as the size of the sam-
ple, impurities and defects, amplitude and frequency of
a measuring �eld, a too fast variation rate of external
parameters in comparison with internal relaxation times.
Therefore, to reproduce the results of real experiments
in the vicinity of the critical point one should take into
account the e�ective exponents re�ecting the properties
of the sample itself together with the experimental con-
ditions. These numbers are, in fact, no longer critical
exponents, but still e�ective ones (for example see Refs.
[13�16]). However, the scaling equations of state cannot
be used far below the phase transition where e�ects due
to the order parameter saturation become dominating.

On the other hand, mean �eld approximations provide
a description down to helium temperatures but they in-
variably imply classical critical exponents in the vicin-
ity of the critical temperature [3, 5, 10, 12]. Therefore,
one should look for the equations of state that are valid
in both regions and capable of reproducing the real ex-
perimental data. This means that the equation of state
should give power laws in the very vicinity of the critical
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temperature and describe saturation of the order param-
eters, at the adequate temperatures. A method of con-
struction of the equation of state with the use of micro-
scopic models based on the crystallographic structure will
be presented in Sect. 3. This method will be exempli�ed
on the ferroelectric [NH2(CH3)2]3Sb2Cl9 � dimethylam-
monium nonachlorodiantimonate, abbreviated DMACA
[17�20], undergoing continuous phase transition at 242 K.
Another smooth anomaly of the spontaneous polarisation
has been observed in the low temperature region about
215 K. The anomaly is attributed to subsequent orien-
tational ordering of a sublattice of polar molecular ions.
A scheme of the construction of Hamiltonians involving
multiple deformable sublattices (many-sublattice pseu-
dospin Ising model, MS-PIM) will be presented.

2. Experimental details and properties

of ferroelectric DMACA

2.1. Experimental details

Single crystals of [NH2(CH3)2]Sb2Cl9 were grown by
slow evaporation from aqueous solution containing 3:2
mole fraction of [NH2(CH3)2]Cl and Sb2O3 with an ex-
cess of HCl. The synthesis of the crystal DMACA is given
in detail elsewhere, for example see Refs. [17, 18]. Thin
slices of DMACA were cut from single crystals normal to
the c and b crystallographic axes of the room temperature
structure.
The polarisation along the a and c crystallographic

axes have been measured by two di�erent methods, and
they are presented elsewhere: pyroelectric method [21]
and Chynoweth technique [17] with the temperature rate
of 1 K/min and of 3.8 K/min, respectively. The temper-
ature dependence of the spontaneous polarization, by the
pyroelectric technique, was measured continuously by a
charge-integration technique using a digital electrometer
Keithley 617. The samples were of dimensions of about
5× 5× 1 mm3. The errors of the measured polarisations
are not higher than 1%.
The other physical quantities as lattice cell parameters,

a, b, and c [18, 21], the speci�c heat [22], the susceptibil-
ity in zero and non-zero biasing �elds [23�25], the linear
birefringence [26], the Brillouin scattering [27] and the
structure [28] have also been measured.

2.2. Phase sequence in DMACA

The ferroelectric DMACA undergoes a continuous
phase transition at TC = 242 K [17�28]. The symme-
try relation is Pc → P21/c [28]. The crystal structure
of DMACA at low temperature phase is built of anionic
sublattice in the form of two-dimensional layers, lying in
the bc plane, formed by a distorted hexachloroantimonate
octahedra joint by corners, and six dimethylammonium
cations (DMA) in the cell [28]. The DMA cations can be
divided into three classes in the low temperatures phase
and into two classes in the high temperature phase. One
of the DMA cation class (abbreviated as DMA1 in both
phases) is located between the layers and the remaining

two cation classes (abbreviated as DMA2, DMA3∗ in the
ferroelectric phase and DMA2∗ in the paraelectric phase)
� inside the layers.

The mechanism of the phase transition at 242 K in-
volves ordering of four of the six DMA cations [18, 21,
23�25, 28] in the unit cell. The cations of the class DMA1
are disordered so that they occupy two orientations with
an occupancy factor of 0.5 in the paraelectric phase [28].
This class of cations becomes ordered in the ferroelec-
tric phase. The reorientational motions of these cations
freeze at TC. Every cation of the class DMA2∗, shows
three non-equivalent orientations DMA21, DMA22 and
DMA23 in the paraelectric phase with the occupancy fac-
tors: 0.48, 0.37 and 0.15, respectively [28]. Below TC two
of the four cations, abbreviated as DMA21 in paraelec-
tric phase, become ordered (in ferroelectric phase they
are abbreviated as DMA2) and two other cations remain
still disordered, but with two non-equivalent positions
DMA31 and DMA32 with the occupancy factors 0.73 and
0.27, respectively [28], and this cations class is abbrevi-
ated as DMA3∗.

2.3. Spontaneous polarisation along a and c
crystallographic axes

Figure 1a and b shows the spontaneous polarisation
along a and c crystallographic axes measured by pyro-
electric method, respectively. One sees that spontaneous
polarisations are increasing functions of temperature up
to about 215 K and then they change the behaviour and
become decreasing functions of temperature. The dipole
moment of the DMA1 cations, in the low temperature
phase, has non-vanishing component along a and c crys-

Fig. 1. Spontaneous polarisations measured by pyro-
electric method along (a) a axis, (b) c axis.
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Fig. 2. Spontaneous polarisations measured by
Chynoweth technique along (a) a axis, (b) c axis.
Spontaneous polarisations are given in the arbitrary
units.

tallographic axes, the component along the a axis being
few times higher than the one along the c axis. The
dipole moments of the DMA2 cations have components
along c axis a few times higher than along a axis. The a
and c components of the dipoles of the DMA3∗ cations
are almost equal but the component along the a axis is
opposite to the corresponding component of the DMA1
dipoles.
The cations class DMA2∗ starts ordering in tempera-

tures lower than TC and therefore their contribution to
the total spontaneous polarisation is visible along a axis
as a decreasing function of lowering temperature. The
phase transition temperatures are about 241.88 K and
241.12 K for a and c axes, respectively. Figure 2a and b
shows the spontaneous polarisations along a and c crys-
tallographic axes measured by the Chynoweth technique.
In this technique the phase transition temperatures are
estimated as the in�ection points and they are about
241.88 K and 241.78 K for a and c axes, respectively.
Huge values of the spontaneous polarisation tails above
these temperatures, together with the high rate of the
temperature variations, makes these data rather indica-
tive than quantitative.

3. Many-sublattice pseudospin Ising model

To give the equation of state for the ferroelectric
material DMACA one needs to write the Hamilto-
nian containing interaction terms between dipole mo-
ments of: (i) DMA1 cations σi�σj ; (ii) DMA2 cations
µi�µj ; (iii) DMA3∗ cations ηi�ηj ; (iv) DMA1�DMA2

and DMA1�DMA3∗ cations σi�µj and σi�ηj ; (v) DMA2�
DMA3∗ cations µi�ηj . The interaction strengths must
re�ect that the DMA2 and DMA3∗ cations start to or-
der in temperatures lower than TC. They will then order
in the e�ective �eld of the ordered DMA1 cations. Intro-
ducing

si ≡ µi + ηi and ri ≡ µi − ηi (1)

one can write that the n-th element of the mean �eld
many-sublattice pseudospin Ising model Hamiltonian is

H(MS−PIM)
n ≡ −1

2

(
ks〈s〉2+kr〈r〉2+ j〈σ〉2+2g〈r〉〈σ〉

)
− (h0 + ks〈s〉) sn + (kr〈r〉+ g〈σ〉) rn
+ (g〈r〉+ j〈σ〉)σn, (2)

where j is a coupling coe�cient between σi�σj , ks is the
coupling coe�cient between si�sj , kr is the coupling coef-
�cient between ri�rj , g is the coupling coe�cient between
σi�rj ; 〈σ〉, 〈s〉, 〈r〉 are average values of dipole moment
in the mean �eld of the other dipoles and h0 is the ef-
fective �eld of the ordered DMA1 acting on the DMA2
and DMA3∗ cations. The σn can take two positions, let
us say, up and down and µn and ηn � three positions,
let us say, A, B, and C with adequate occupancy factors.
Therefore, the Hamiltonian is a sum over n = 1−18, for
all of the possible combinations of σn, µn, and ηn po-
sitions. The partition function Z and the free energy
density function F are given by following relations:

Z =

18∑
n=1

exp

(
−H

(MS−PIM)
n

kBT

)
, (3a)

F = −kBT lnZ, (3b)

where kB is the Boltzmann constant.
The equations of state correspond to the requirement

of a minimum of the free energy density F

∂F

∂〈σ〉
= 0,

∂F

∂〈s〉
= 0,

∂F

∂〈r〉
= 0. (4a, 4b, 4c)

Equations (4a)�(4c) give temperature dependence of the
order parameters 〈σ〉, 〈s〉, 〈r〉. Six general cases are pos-
sible with the corresponding values of the coe�cients j,
g, ks, and kr in Eq. (2).
Case 1. The coe�cient j is the only non-zero one,

j 6= 0, whereas g = ks = kr = 0. Figure 3a shows
the dependence of the order parameter 〈σ〉 on temper-
ature, with the coe�cient j = 240kB. In this case one
deals with one-lattice phase transition only. The critical
temperature is equal to 240 K and, generally, is de�ned
as TC = j/kB. This dependence can be compared with
pseudospin Ising model for uniaxial material (for example
see Refs. [15, 16]).
Case 2. The coe�cients ks and kr are di�erent from

zero, ks 6= 0 and kr 6= 0, and the remaining vanish,
g = j = 0. Figure 3b shows the dependence of the or-
der parameter 〈r〉 on temperature, with the coe�cients
ks = 273kB and kr = 310kB. In this case one deals
with two-lattices phase transitions (DMA2 and DMA3∗).
The phase transition is discontinuous one at temperature
about TC ≈ (kr/kB)f1 ≈ 13.4 K.
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Fig. 3. Temperature dependences of the order param-
eters: (a) 〈σ〉 for the only non-zero coe�cient j, j 6= 0
(cases 1 and 3), (b) 〈r〉 for coe�cients ks and kr di�er-
ent from zero, ks 6= 0 and kr 6= 0, and the remaining
vanishing, g = j = 0 (cases 2 and 3).

Case 3. The coe�cient g is equal to zero, g = 0, and
the other are non-zero, j 6= 0, ks 6= 0 and kr 6= 0. Fig-
ure 3a and b presents the temperature dependences of the
order parameters 〈σ〉 and 〈r〉, respectively, with the coef-
�cients from cases 1 and 2. One sees that in this case one
deals with two separate, non-coupled phase transitions.
One of them is continuous and the other discontinuous.

Case 4. The coe�cients j and g are non-zero ones,
j 6= 0 and g 6= 0, and the other vanish, ks = kr = 0.
This means that one deals with the interactions between
order parameters σi�σj and σi�rj and, moreover, the or-
der parameter 〈r〉 is in the e�ective �eld of the order
parameter 〈σ〉.
Figure 4a and b shows the temperature dependences

of the order parameters 〈σ〉 and 〈r〉, respectively, with
the coe�cients j = 240kB and g = 30kB. The critical
temperatures for both transitions are about TC ≈ j/kB+
g2j−1k−1B f1 and equal to 240.7 K. Both transitions are
continuous.

Case 5. The coe�cient j is equal to zero, j = 0, and
the remaining are non-zero, g 6= 0, ks 6= 0 and kr 6= 0.
This means that one deals with the interactions between
order parameters ri�rj , si�sj , and σi�rj and, moreover,
the order parameter 〈σ〉 is in the e�ective �eld of the
order parameter 〈r〉.
Figure 5a and b shows the temperature dependences

of the order parameters 〈σ〉 and 〈r〉, respectively, with
the coe�cients ks = 210kB, kr = 310kB and g = 30kB.
Both transitions are continuous and take place at about
TC ≈ (kr/kB)f1 + g2k−1r k−1B f2/f1 ≈ 18.1 K.

Case 6. ll of the coe�cients di�er from zero, j 6= 0,
g 6= 0, ks 6= 0 and kr 6= 0. Figure 6a and b presents

Fig. 4. Temperature dependences of the order param-
eters: (a) 〈σ〉, (b) 〈r〉 for coe�cients j and g being non-
-zero ones, j 6= 0 and g 6= 0, and the other vanishing,
ks = kr = 0 (case 4).

Fig. 5. Temperature dependences of the order param-
eters: (a) 〈σ〉, (b) 〈r〉 for coe�cient j being equal to
zero, j = 0, and the remaining ones are non-zero, g 6= 0,
ks 6= 0, kr 6= 0 (case 5).
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the temperature dependences of the order parameters 〈σ〉
and 〈r〉, respectively, with the coe�cients j = 240kB,
ks = 180kB, kr = 210kB and g = 50kB. The both
transitions are continuous ones and take place at about
TC ≈ j/kB + g2k−1r k−1B f1 ≈ 243.8 K. Even for the very
weak coupling coe�cient g one deals with continuous
phase transitions.

Fig. 6. Temperature dependences of the order param-
eters: (a) 〈σ〉, (b) 〈r〉 for all of the coe�cients di�ering
from zero, j 6= 0, g 6= 0, ks 6= 0, kr 6= 0 (case 6).

The functions fi, i = 1, 2, in cases 1�6 are some com-
binations of the model coe�cients and of the material
constants. They are given in ppendix A.

4. Discussion

Comparing the experimental curves of the spontaneous
polarisations along a and c axes in Figs. 1a�2b, with
the theoretical ones, shown in Figs. 3a�6b, one sees that
in order to obtain the best �t all the coe�cients of the
model should be non-zero. In particular, in the case of
a non-zero coe�cient g all of sublattices are coupled to
each other. Moreover, in cases 4�6, the presence of the
non-zero coe�cient g in Eq. (2) results in equating of
the critical temperatures for the order parameters 〈σ〉
and 〈r〉. Additionally, comparing Figs. 3b and 5b one sees
that in the presence of the coupling term between cations
classes DMA1 and DMA2 or DMA3∗ the phase transition
changes from discontinuous to continuous. This means
that the e�ective �eld due to the ordered cations DMA1
changes the kind of the phase transition of cations classes
DMA2 and DMA3∗. This is very similar to the ordering
of the systems showing the �rst order phase transitions in
the very strong �elds that causes changes in the character
of the phase transitions [8, 12, 38].
In order to obtain the di�erent phase transition tem-

peratures for the order parameters 〈σ〉 and 〈r〉 one needs

Fig. 7. Temperature dependences of the order param-
eters for di�erent cases: (a) and (c) the order parameter
〈σ〉, (b) and (d) the order parameter 〈r〉 for coe�cients
given in Table. Solid curves are dependences in non-
compressible model (all of coe�cients do not depend on
strain); dashed curves (compressible �1�) � only coe�-
cient j depends on strain up to the linear term; short-
dashed curves (compressible �2�) � coe�cient j depends
on strain up to the square term; dotted curves (com-
pressible �3�) � coe�cient j depends on strain up to
the square term and coe�cients ks and kr � up to the
linear terms; and dash-dotted curves (compressible �4�)
� coe�cients j, ks and kr � up to the square terms.

to put a temperature dependence to the coe�cient g.
In the case 3 the temperatures of the phase transitions
become di�erent. part from that the phase transitions
become of di�erent kinds and the temperature of the
phase transition for the order parameter 〈r〉 becomes
rather low.
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To obtain a saturation of the spontaneous polarisa-
tions in temperatures similar as in the real materials one
has to replace the constant coe�cients j, ks and kr with
functions depending on the secondary order parameter,
as in the case of uniaxial ferroelectric materials MAPCB
and MAPBB [14, 16, 29, 39]. Then one deals with
polarisation-strain coupling.
Figure 7a and b shows the temperature dependences

of the order parameters 〈σ〉 and 〈r〉, respectively, for the
case 6 with coe�cients: solid curves � all of the coe�-
cients are temperature independent, dashed curves � the
coe�cient j does depend on the strain up to the linear
term, short-dashed curves � the coe�cient j depends on
the strain up to the square term.
Figure 7c and d presents the temperature dependences

of the order parameters 〈σ〉 and 〈r〉, respectively, for the
case 6 with coe�cients: solid curves � all of the coe�-
cients are temperature independent, short-dashed curves
� the coe�cient j depends on the strain up to the square
term, dotted curves � the coe�cient j depends on the
strain up to the square term and the coe�cients ks and
kr � up to the linear terms, dash-dotted curves � the
coe�cients j, ks and kr do depend on the strain up to
the square terms. The coe�cients j, ks and kr are given,

generally, by

j = j0 + j1ε+ j2ε
2, (5a)

ks = ks0 + ks1ε+ ks2ε
2, (5b)

kr = kr0 + kr1ε+ kr2ε
2. (5c)

The values of the coe�cients in Eqs. (5a), (5b) and (5c)
are given in Table. ll of the values of the coe�cients in
the cases 1�6 and presented in Table are chosen to be
close to the real ones [14, 16, 29, 39]. One sees that for
the case of compressible model the saturation of the order
parameter is much faster. Additionally, the temperatures
of the phase transitions are very weakly dependent func-
tions of the coe�cients j1 and j2, see Figs. 7a and b �
the critical temperatures changes between incompressible
and compressible models are smaller than 0.01 K. But the
temperatures of the phase transitions do stronger depend
on the coe�cients ksi and kri , for i = 1, 2. The critical
temperature for only coe�cient j given by Eq. (5a) and
with the remaining coe�cients independent of the strain
is about 241.7 K. When the coe�cients ks and kr do de-
pend on the strain, Eqs. (5b) and (5c), then the critical
temperatures are about 245.5 K, for the linear depen-
dences on the strain, and about 245.9 K, for the square
dependences on the strain.

TABLE

Values of coupling coe�cients between primary order parameters, polarisations along a and c
crystallographic axes, and secondary order parameter, strain, used in Eqs. (2), (5a), (5b) and (5c)
to obtain Fig. 7a�d. ll values of coe�cients are multiplications of the Boltzmann constant kB.

Fig. No. j0 j1 j2 g ks0 ks1 ks2 kr0 kr1 kr2
7a 240 1.6× 104 5.5× 105 30 220 � � 310 � �

7b 240 1.6× 104 5.5× 105 30 220 � � 310 � �

7c 240 1.6× 104 5.5× 105 30 220 500 1.3× 105 310 500 1.5× 105

7d 240 1.6× 104 5.5× 105 30 220 500 1.3× 105 310 500 1.5× 105

5. Conclusions

The above general model of three sublattices of inter-
acting dipolar cations show that the model coe�cients
should depend on strain. Moreover, the coupling coe�-
cient of the sublattices ought to be function of temper-
ature for DMACA. A discontinuous phase transition in
two of the sublattices is smeared out over a range 10 K
because of this coupling giving rise to a broad thermal
anomaly. The sublattices DMA2 and DMA3∗ show the
strongest coupling with the strain than DMA1 that is
essential in the fast saturation of the order parameter
below the critical temperature.

Appendix

The temperatures of the phase transitions TC in the
cases 1�6 are estimated from the self-consistent equations
given above, in the cases 1�6, with

f1 =
[
(+B)2 exp ((−B)γhs) + (+C)2

× exp ((−C)γhs) + (B + C)2 exp ((B − C)γhs)
]

/{[
exp (2h0/kBTC) + exp (2Bh0/kBTC)

+ exp (2Ch0/kBTC)
]/
2 +

[
exp ((−B)γhs)

+ exp ((−C)γhs) + exp ((B − C)γhs)
]}
,

f2 =
[
(+B) exp ((−B)γhs) + (+C)

× exp ((−C)γhs) + (B + C) exp ((B − C)γhs)
]

/{[
exp (2h0/kBTC) + exp (2Bh0/kBTC)

+ exp (2Ch0/kBTC)
]/
2 +

[
exp ((−B)γhs)

+ exp ((−C)γhs) + exp ((B − C)γhs)
]}
,

where γhs =
h0+ks〈s〉TC

kBTC
and 〈s〉TC

is the value of the

order parameter 〈s〉 exactly at TC.
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In the case 4 one got to put into the function f1 the
value ks = 0.
The order parameters 〈σ〉 and 〈r〉 are equal to zero in

the high temperature phase, but the parameter 〈s〉, not
breaking the symmetry operation, is di�erent from zero
value. Therefore, knowing the occupancy factors for the
states denoted as A, B, and C, at the temperature 298 K,
one can obtain equations relating these quantities and h0
from the partition function. Generally, the e�ective �eld
h0 does a dependence on the average value of the dipole
moment DMA1 in the low temperature phase and takes
a constant value in the high temperature phase. In the
�rst approximation we have taken constant value of the
e�ective �eld h0, similarly as for ferroelectric MAPCB
[10, 40], calculated in the paraelectric phase. To obtain
values for B and h0 we assumed that A and C are equal
to 1 and 0, respectively. Then B equals to 0.776 and h0
equals to 346.62kB. To obtain dependence of the e�ec-
tive �eld h0 on temperature more sophisticated method
should be applied (e.g. ab initio, etc.).
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