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The magnetic ordering of the Tb2Ni1.78In and Tb2Ni2In have been studied by neutron di�raction measure-
ments. Tb2Ni1.78In with the tetragonal Mo2FeB2-type (space group P4/mbm, tP10) is antiferromagnet with the
Néel temperature equal to 20 K. Below this temperature Tb moments form collinear magnetic structure commen-
surate with the crystal, described by the propagation vectors equal to (1/4, 1/4, 1/2). Magnetic moment equal
to 7.60(6) µB is parallel to c-axis. The Tb2Ni2In in the orthorhombic Mn2 lB2-type (space group Cmmm, oC10)
was detected as an impurity in the studied sample. It orders antiferromagnetically below ≈ 100 K with collinear
moment arrangement described by the propagation vector (1/2, 1/2, 1/2). t 1.6 K µTb = 6.33(14) µB and is
parallel to the c-axis.
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1. Introduction

Magnetic materials are of particular interest and im-
portance in both fundamental and applied research [1].
Interesting group of intermetallic compounds may be
found in the R�Ni�In (R = rare earth elements) system.
According to Ref. [2], rare earth elements form 22 ternary
compounds of the R2Ni2In and R2Ni2−xIn (x = 0.22)
type.
The X-ray di�raction data indicate that investigated

in this work Tb2Ni1.78In and Tb2Ni2In compounds crys-
tallize in the following structure types:

• Tb2Ni1.78In in the tetragonal structure of
Mo2FeB2-type (space group P4/mbm, tP10,
Z = 2) [3], which is a ternary derivative of the
binary U3Si2-type [4],

• stoichiometric composition Tb2Ni2In has the or-
thorhombic structure of the Mn2 lB2-type (space
group Cmmm, oC10, Z = 2), related to the
Mo2FeB2-type [5].

The details concerning these structures are discussed in
the second part of the work.
The magnetic properties have been determined only for

some Tb�Ni�In compounds. Temperature dependence
of the magnetic susceptibility and magnetization indi-
cate the ferromagnetic behavior with Tc equal to 70 K in
TbNiIn [6] and antiferromagnetic with TN equal to 20.2 K
in Tb2Ni1.78In compounds [7]. Temperature dependence
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of magnetic susceptibility of Ce2Ni2In (Mo2FeB2-type)
indicate the intermediate valence behavior [8, 9], while
magnetic and speci�c heat measurements carried out for
Nd2Ni2In (Mo2FeB2-type) indicate antiferromagnetic or-
der below TN = 8K [10].
In this paper we report the results of the X-ray

and neutron di�raction measurements as the function of
temperature for Tb2Ni1.78In and Tb2Ni2In compounds.
From these data the crystal and magnetic structure pa-
rameters of these compounds versus temperature are de-
termined.

2. Experimental details

The sample of the total weight of 3.5 g was obtained
by the standard melting procedure of high-purity raw
metals (Tb-3N, Ni-4N and In-5N): the appropriate for
the nominal compositions amounts of the elements were
arc-melted under pure argon on a water cooled copper
crucible with a tungsten electrode and titanium serving
as a getter. To ensure good homogeneity, the sample was
annealed at 870 K for 1 month.
The X-ray powder di�raction pattern was recorded at

room temperature using a STOE ST DI P di�ractometer,
with Cu Kα1 radiation, curved Ge (111) monochromator
transmission geometry, measured interval 6 ≤ 2θ ≤ 100◦

in scan step mode, step size in 2θ = 0.015◦.
The FullProf program [11] package was used for X-ray

phase and the Rietveld analysis of the collected data set.
Neutron di�raction data were collected with the E6

powder di�ractometer located at the Helmholtz-Zentrum
Berlin. The specimen with mass of about 3 g was en-
capsulated in a cylindrical vanadium container. Neutron
di�raction patterns were collected between 1.5 and 100 K
with the incident neutron wavelength of 2.440 . Re�ne-
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ments of the neutron data were made using the FullProf
program [11].

3. Results

3.1. Crystal structure

The X-ray at room temperature and neutron di�rac-
tion data at 100 K of the synthesized sample indicate that
the strong intensity peaks correspond to the tetragonal
structure Mo2FeB2 (space group P4/mbm), while the
small intensity peaks are connected with the orthorhom-
bic phase of the Mn2 lB2 structure type (space group
Cmmm).
In the tetragonal structure the Tb atoms occupy 4 h

site: (x, 1/2 + x, 1/2), Ni atoms 4 g site: (x, 1/2 + x, 0)
and In atoms 2a site: (0, 0, 0).
In the orthorhombic structure Tb atoms are in 4j site

(0, y, 1/2), Ni atoms in 4i site: (0, y, 0) and In atoms in
2a site: (0, 0, 0).

TABLE

Crystal structure parameters of Tb2Ni1.78In and
Tb2Ni2In together with residuals for pro�le and in-
tegrated intensities. The parameters were derived
from paramagnetic neutron di�raction patterns collected
at 100 K.

Compounds Tb2Ni1.78In Tb2Ni2In

a [ ]

b [ ]

c [ ]

V [ 3]

Tb

Ni

In

RBragg [%]

RF [%]

7.3558(8)

7.3558(8)

3.6565(4)

197.845(65)

4h (x) 0.1789(5)

4g (x) 0.3799(4)

2a

9.0

6.7

3.9046(16)

14.1276(67)

3.6800(12)

203.00(24)

4j (y) 0.3703(14)

4i (y) 0.2007(10)

2a

13.4

11.7

The re�nement of the paramagnetic neutron di�rac-
tion pattern taken at 100 K has yielded crystallographic
parameters of both phases. The results are listed in Table
and de�ne the part of individual phases: 90 wt% tetra-
gonal and 10 wt% orthorhombic. The determined pa-
rameters are in good agreement with the previous X-ray
data [3, 5].

3.2. Magnetic structure

The neutron di�raction pattern collected at 30 K (see
Fig. 1b) contains additional Bragg re�ections originating
from magnetic order. They should come from the or-
thorhombic phase, because the magnetic data for tetra-
gonal phase give the Néel temperature equal to 20.2 K [4].
These re�ections can be indexed with the use of the prop-
agation vector k = (1/2, 1/2, 1/2). Similar propaga-
tion vector is determined for the magnetic order in the
isostructural Er2Ni2Pb compound [12]. In the crystallo-
graphic unit cell of Tb2Ni2In compound the Tb atoms are
in following positions: Tb1 (0, y, 1/2), Tb2 (0, ȳ, 1/2),

Fig. 1. Neutron di�raction patterns of Tb2Ni2−xIn
measured at di�erent temperatures equal to (a) 100 K,
(b) 30 K, and (c) 1.5 K. In all patterns the squares rep-
resent experimental points. The solid lines are: the cal-
culated pro�le for crystal and magnetic structure mod-
els (as is described in the text) and di�erence between
the observed and calculated intensities (at the bottom
of each diagram). The vertical bars indicate the posi-
tions of nuclear (�rst top and third rows) and magnetic
(second fourthly row) for Tb2Ni1.78In and Tb2Ni2In, re-
spectively.

Tb3 (1/2, 1/2+y, 1/2) and Tb4 (1/2, 1/2−y, 1/2). The
irreducible representation gives six models of the mag-
netic order (see Table II in Ref. [12]). The best agree-
ment with the experimental one is obtained for the model
in which Tb moments equal to 2.31(4) µB are parallel to
the c-axis with the sequence of the signs + +−+ in crys-
tallographic unit cell (Rmag = 16.9%).
On the neutron di�raction pattern collected at 1.5 K

(see Fig. 1c) besides the peaks observed at 30 K the
additional peaks are present. ll these re�ections can
be indexed with the use of the propagation vector k =
(1/4, 1/4, 1/2). Terbium magnetic moments occupy in
Tb2Ni1.78In compound the 4h positions with moments
at Tb1 (x, 1/2 + x, 1/2), Tb2 (x̄, 1/2 − x, 1/2), Tb3
(1/2 + x, x̄, 1/2) and Tb4 (1/2 − x, x, 1/2). The best
agreement with experimental data are obtained for the
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following sequence of the signs + + −− for Tb moments
in the crystallographic unit cell. Tb moments equal to
7.60(6) µB is parallel to the c-axis (Rmag = 8.1%). In
orthorhombic phase Tb moments equal to 6.33(14) µB

and parallel to the c-axis form similar magnetic order
like that in 30 K (Rmag = 10.6%).

Temperature dependence of the values of the magnetic
moments in Tb2Ni1.78In compound (see Fig. 2) gives the
Néel temperature equal to 21 K for the tetragonal phase,
in good agreement with the results obtained from the
magnetic data. The Néel temperature for the orthorhom-
bic phase determined by magnetic measurements is equal
to ≈ 100 K [13].

The lattice parameter a and the unit cell volume V
determined for tetragonal phase increase with increasing
temperature, while the c lattice parameter decreases (see
Fig. 2). This indicates the existence of the magnetoelas-
tic e�ect.

Fig. 2. Temperature dependence of the values of the
lattice parameters a and c, unit cell volume V and the
Tb magnetic moments for Tb2Ni1.78In compound.

4. Discussion

The results presented in the work give the parameters
of the crystal and magnetic structures of two compounds
� Tb2Ni1.78In and Tb2Ni2In. Determined in 100 K pa-
rameters of the crystal structure are in good agreement
with those determined from X-ray data at room temper-
ature. The analysis of the positions and intensities of the
Bragg re�ections indicate that the crystal structures are
stable up to 1.5 K. Comparison of the both crystal struc-
tures is shown in Fig. 3. The Tb2Ni2In and Tb2Ni1.78In
structures are two-dimensional in direction of the short-
est cell parameter, i.e. layers of terbium atoms alternate
with layers of Ni and In. In the Tb2Ni2In structure Ni
atoms form zigzag chains along the x-axis (Ni�Ni dis-
tances 2.394 Å), whereas in Tb2Ni1.78In only separate
pairs Ni�Ni (Ni�Ni distances 2.499 Å) are observed. The
shortest Tb�Tb distances are 3.673 Å in Tb2Ni2In and
3.657 Å Tb2Ni1.78In, respectively to data in Table.

Fig. 3. Comparison of the Tb2Ni2In and Tb2Ni1.78In
crystal structures: left � the projection on the (001)
plane in Tb2Ni2In; right � projection on the (001)
plane for Tb2Ni1.78In.

Accordingly to [14, 15], structures of Tb2Ni2In (Mn2
lB2-type) and Tb2Ni1.78In (Mo2FeB2-type) represent ho-
mologous series Rm+nM2nXm where m and n are the
numbers of CsCl (TbIn) and lB2 (TbNi2) related slabs,
respectively. For the both structures m = n = 2.
Both compounds are antiferromagnets with the Néel

temperature equal to 21 K for Tb2Ni1.78In and ≈ 100 K
for Tb2Ni2In, respectively. The Tb moments form
collinear antiferromagnetic structure described by the
propagation vectors equal to (1/4, 1/4, 1/2) for �rst and
(1/2, 1/2, 1/2) for the second. The direction of the mag-
netic moments is di�erent: in Tb2Ni1.78In magnetic mo-
ment is parallel to the c-axis as well perpendicular to the
layer (a�a), while in Tb2Ni2In the moment is parallel to
the short c-axis. The values of the Tb magnetic moment
are smaller than that for free Tb3+ ion value equal to
9.0 µB, which indicates in�uence of the crystal electric
�eld.
The magnetic structure of Tb2Ni1.78In is di�erent

from these observed in isostructural U2T2X2, where T
is d-electron element and X = Sn, In. In all these com-
pounds magnetic ordering is described by the propaga-
tion vector k = (0, 0, 0) or (0, 0, 1/2). The moments in
(001) plane form collinear or non collinear ordering (see
Figs. 6 and 7 in Ref. [16]).
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In Ce2Pd2Sn in intermediate region the modulated
magnetic structure with the propagation vector equal to
k = (kx, 0, 0) is observed. With decrease of the tem-
perature the change to the collinear one described by the
k = (0, 0, 0) is observed [17].
A modulated ordering of the praseodymium and

neodymium magnetic moment with propagation vector
k = [0, 0, 1/2] and [1/4, 1/4, 0] below the Néel temper-
atures TN = 5K and 8 K is evident for Pr2Pd2In and
Nd2Pd2In, respectively [18].
In R2Ni2Pb (R = Dy, Ho) compounds the magnetic or-

der is observed with the two commensurate propagation
vectors k1 = (0, 0, 0) and k2 = (1/3 , 0, 0) for R = Dy
[19] and one k = (1/5, 0, 0) for R = Ho [20].
In Er2Ni2Pb the complex magnetic order is observed.

With the increase of the temperature the change of the
type of magnetic structure is observed [12].
For both compounds Tb2Ni1.78In and Tb2Ni2In the

Tb�Tb interatomic distances are large. This indicates
that the interaction between Tb moments is of the
Ruderman�Kittel�Kasuya�Yosida (RKKY) type. In this
case the Néel temperature is expected to be a function
of the de Gennes factor (gJ − 1)2J(J + 1) where gJ
is the Landé splitting factor and J is the total angu-
lar momentum of the corresponding magnetic ion. For
R2Ni2−xIn compounds this relation is not ful�lled (see
Fig. 4 in Ref. [7]) which indicates the in�uence of the
crystal electric �eld (CEF). Competition of two interac-
tions: RKKY and CEF lead to complicated magnetic
structures [21].
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