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1. Introduction

Apart from usual quantization steps in the conduc-
tance of 1D systems, equal to Gy = 2¢%/h [1], an addi-
tional plateau-like feature appears at a fraction of about
0.7 below the first conductance step in GaAs-based quan-
tum point contacts (QPCs) [2, 3]. Despite a huge number
of research works devoted to this anomalous feature, its
origin remains still unclear [4]. Here, an unique expla-
nation of this anomaly is proposed, which relies on the
fundamental principles of quantum mechanics: superpo-
sition and interference of (spin) states.

2. Superposition and interference

Any spin state (spin configuration) of an electron can
be represented as a spinor

) = cos(0;/2) exp(—ip;/2)
! sin(6;/2) exp(ip;/2) ’

where 6 and ¢ are the angles of the spherical coordinate
system.

Principle of quantum superposition claims that any
physical system — such as an electron — exists partially
in all its possible states simultaneously, as long as it is
not being observed. In the absence of a magnetic field,
all spin configurations are equally probable. The super-
posed spin state of an electron can be then written as
|Y) = C'>, |14), where the summation is over all possi-
ble spin configurations, and C' is a normalization factor.
Probability of finding an electron in this state is

Po=|CP @) = O [ D @ilws) + Y (wiley)

4 1,5517#]

The second sum in the bracket results from quantum in-
terference between the different spin states. Because of
infinite number of those states, the summations should be
replaced by integration over the surface of a unit sphere.
Applying that, one finds P; = |C]*(1 + I), where the
calculated interference term I = 0.36.
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While an electron is being observed, the interference
term vanishes. Then one has to sum probabilities in-
stead of probability amplitudes, similarly as in case of
double-slit interference. The ratio between probability
of finding an electron when it is subject to observation,
P,, and that when it exists in the superposed state, P,
is k = P,/P, =0.73.

3. Destruction of interference in the QPC

Consider an electron transmitted through a QPC via
the lowest 1D energy subband. The electron can exist ei-
ther in the superposed state (S-regime) or — if it is being
observed — in one of the possible spin states (O-regime)
that excludes interference. It is known from the double-
-slit experiment that it is not necessary to perform any
real observation of an electron for destructing the inter-
ference [5]. It is enough to create conditions allowing such
an observation. Here, that condition can appear when no
more than one electron at a time travels the constriction
region. That condition allows observing a single electron
alone. Assuming the constriction represents an 1D chan-
nel, the density of electron states is there

1 (2m\"/?

P=h <E) :
The average number of electrons travelling at the same
time through the 1D channel of the length L (in both
directions) is
(8mu)'/2L

Th
when the chemical potential (measured from the bottom
of the 1D energy subband at the constriction bottleneck)
w> kT,

Assuming L = 50 nm, and m = 0.067m., one gets
N =1 for p = 0.55 meV. As long as the chemical po-
tential remains below this value the system can appear
in O-regime, and no interference occurs between different
spin states.

4. Low-temperature limit

The Heisenberg relation AzAp > fi/2 determines the
uncertainty of electron position Az along the 1D channel,

(841)


http://dx.doi.org/10.12693/APhysPolA.124.841
mailto:figiel@ifpan.edu.pl

842 T. Figielsk:

where Ap is the uncertainty about electron momentum.
Requiring that the electron under observation should be
fully localized within the constriction, Az < L, one finds,
after some manipulation, a relation that limits the bot-
tom temperature allowing the occurence of O-regime
I
kKT > o

The transition from S- to O-regime has to be accompa-
nied by a depression in the conductance of QPC from G
to kGp. Thus, just after opening the conducting chan-
nel in the constriction its conductance is x (2¢2/h), and
only when the chemical potential exceeds a critical value,
the conductance reaches its “normal” magnitude 2¢2/h.
This critical value is gradually reduced as the temper-
ature drops below some level, and eventually a single
conductance step at Gg is only observed. The calculated
value K = 0.73 is close to the fraction 0.7 characteristic
of the observed anomaly.

5. Summary

The proposed model has the following advantages over
those proposed hitherto: it predicts numerically the frac-
tion of Gy characteristic of the anomaly, explains the dis-
appearance of the anomaly at the lowest temperatures,

predicts its vanishing with growing length of the constric-
tion, and treats on equal foots both the n- and p-type
channels.
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