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Calculations of the quantum correction to the DC conductance of a cylindrical nanowire due to the quantum
interference are presented. The real space Cooperon equation is solved for cylindrical geometry. Using this
approach, it is shown that the quantum correction to the conductance in the weak localisation regime depends not
only on the dephasing processes but also on geometrical parameters of the nanowire.
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1. Introduction

The progress made in the development of the experi-
mental techniques of low-dimensional system fabrication
allows to synthesize semiconductor nanowires with in-
creasing aspect ratio of a rod (length:diameter). Nowa-
days, the length of semiconductor nanowires exceeds tens
of micrometers and their diameter is below 100 nm [1�3].
The transport properties of nanowires based on III�V and
II�VI compound semiconductor materials can be con-
trolled by adding impurities during the growth process
of nanostructures [2, 3]. Simultaneously, these impurities
form scattering centres for carriers, and their multiple
scatterings lead to momentum correlations, so that the
electronic transport displays the non-Markovian proper-
ties, i.e., successive scatterings of carriers are not inde-
pendent. One of the main consequences of these correla-
tions in weakly disordered systems is the phase coherence
of carriers, which leads to the weak localisation phenom-
ena [4, 5].
A key parameter for the investigation of the coherence

property of electronic transport is a dephasing length
that describes the distance after which the phase co-
herence of carriers is loosened by their coupling with
phonons, magnetic impurities, other carriers or external
electromagnetic �elds.
In this report we discuss the e�ect of dephasing on

the electronic transport in the cylindrical semiconductor
nanowires within the limit of weak disorder. We develop
the theory of weak localization for cylindrical geometry,
and we apply it to calculate the DC conductance of the
nanowire as a function of the reduced e�ective length,
which is de�ned as the ratio of the nanowire length to
the dephasing length, for di�erent values of the aspect
ratio.
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2. Model, assumptions and method

of calculations

Let us consider spinless electron gas con�ned to a
three-dimensional nanowire made of a semiconductor
material with randomly distributed point-like scattering
centres. We assume that the potential which con�nes
the conduction electrons in nanowire possesses the ro-
tational symmetry along growth axis, so that the cylin-
drical shape of nanowire is considered. Its geometrical
parameters are: radius ρc and length Lz. The transport
properties of the nanosystem can be characterised by the
electrical conductivity which depends not only on semi-
conductor materials but also on the strength of disorder
due to the randomly distributed scattering centres. In
the present case, we assume that weak disorder is de-
scribed by the Gaussian model, and the scattering cen-
tres correlator possesses the white-noise property. The
electronic transport in the weakly disordered nanosys-
tems is modi�ed by the quantum interference which is
responsible for the electronic coherence. The coherent
part enhances the classical return probability and leads
to the quantum correction to the conductance in the form

∆G(ω) = −2e2D0τ

π~
1

L2
z

∫
d3rC(r, r;ω), (1)

where D0 = v2Fτ/3 is the di�usion coe�cient, vF is the
Fermi velocity, τ is the elastic relaxation time, and the
Cooperon C(r; r) represents short-range contribution to
the return probability. The real space Cooperon equa-
tion in the presence of phase-breaking processes is [6]:[
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]
C(r, t; r′, t′)

=
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τ
δ(r − r′)δ(t− t′), (2)

where τφ is the dephasing time. The boundary conditions
for Eq. (2) may be written as

C(r, t; r′, t′)|boundary = 0, (3a)

(838)
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= 0. (3b)

The form of the boundary conditions corresponds to the
absence of di�usion of conduction electrons through the
lateral surface of the cylindrical nanowire, however cur-
rent �ows along the axis of nanowire which is embedded
between re�ectionless electron reservoirs. The Fourier
transform with respect to t− t′ applied to Eq. (2) allows
us to convert it to the form[
− iωτ −D0τ∇2

r + ττ−1φ

]
C(r, r′;ω) = δ(r − r′), (4)

where ω is a frequency. The general solution of Eq. (4)
can be written in the spectral form as follows:

C(r, r′;ω) =
∑
j

Q∗j (r′)Qj(r)

− iωτ + ττ−1φ + λj
, (5)

where Qj(r) and λj are eigenfunctions and eigenvalues,
respectively, which satisfy the equation[
− iωτ −D0τ∇2

r + ττ−1φ

]
Qj(r) = λjQj(r). (6)

In the considered case, the strategy of determination of
the quantum correction to the conductance (1) is based
on the solution of eigenvalue problem (6) with boundary
conditions (3). It allows us to �nd the spectral form of
Cooperon (5), and then compute the quantum correction
to the DC conductance (1) for r′ = r. For this purpose,
we solve the eigenvalue Eq. (6) in the cylindrical coor-
dinates and in the limit of ω → 0, using the separation
of variables method, i.e., Q(r) = R(r)F(ϕ)Z(z) is as-
sumed. The eigenfunctions Qqnm(r, ϕ, z) corresponding
to the eigenvalues λqnm can be written as follows:

Qqnm(r, ϕ, z) = AqnmRm(γqmr)Fm(ϕ)Zn(knz), (7)

where Zkn(z) ∼ sin knz with kn = nπ/Lz and (n =
1, 2, . . .), Fm(ϕ) ∼ exp(imϕ) with (m = 0,±1, . . .),
Rm(γr) ∼ Jm(γr), and Aqnm represents a normalisation
constant. The quantity γ is determined by the solution
of transcendental equation in the form

m

ρc
Jm(γρc)− γJm+1(γρc) = 0, (8)

where symbol Jl(γr) denotes the Bessel function of the
�rst kind of integral order l (l = m or l = m + 1). So-
lutions of the transcendental Eq. (8) are given by the
enumerable set of discrete numbers ηqm(ρc) with index q
numbering the solutions. The above procedure leads to
the set of eigenvalues in the form

λqnm = D0τ

{[
ηqm(ρc)

ρc

]2
+

(
nπ

Lz

)2}
. (9)

3. Results and discussion

Investigation of the quantum corrections to conduc-
tance due to quantum interference e�ects in the weakly
disordered nanowires requires to satisfy a condition in
the form

λF � `� Lz � Lφ, (10)

where λF is the Fermi wavelength, ` is the mean free
path, and Lφ =

√
D0τφ is the dephasing length. Accord-

ing to the results presented in the previous section, the
relative correction to the DC conductance of the cylin-
drical nanowire in this regime of electronic transport is
given by the formula

∆G

G0
= −

∑
q,n,m

2(
Lz
Lφ

)2
+
[
Lz
ρc
ηqm(ρc)

]2
+ (nπ)2

, (11)

where G0 = 2e2/h is the quantized unit of electrical con-
ductance, Lz/ρc = α is the aspect ratio of the nanowire,
and Lz/Lφ represents the reduced e�ective length. In
the context of the weak localisation contribution to the
DC conductance, the semiconductor nanowires made of
In and As elements are particularly interesting because
the ballistic as well as drift transport regime is observed
in these nanostructures, depending on the geometrical
parameters [7].

Fig. 1. The relative correction to DC conductance of
the cylindrical nanowire as a function of the reduced
e�ective length Lz/Lφ.

Figure 1 displays the results of calculations of the rel-
ative corrections to the DC conductance as a function
of the reduced e�ective length for di�erent values of the
aspect ratio. In these calculations, we assume, according
to Refs. [7, 8], that the radius of InAs nanowire is 80 nm,
and the mean free path ` = 40 nm. In all cases the
quantum corrections are decreasing functions of the re-
duced e�ective length independently of the aspect ratio.
The calculated weak localisation corrections are of order
10−4 and cause a decrease of the DC conductance of the
cylindrical nanowire because the sign of this correction is
negative.
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4. Conclusions

We derived the form of the quantum correction due to
quantum interference e�ects to the DC conductance of
weakly disordered cylindrical nanowires in the weak lo-
calisation regime. For this purpose, we solved the real
space Cooperon equation with the phase breaking ratio
in the cylindrical geometry. The main result of our calcu-
lations is the formula (11). We showed that this formula
can be simply expressed by aspect ratio of the nanowire
and reduced e�ective length. The derived quantum cor-
rections reduce the DC conductance of the nanowire and
are sensitive to the dephasing processes and geometrical
parameters of the cylindrical nanowire.
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