Proceedings of the 42th "Jaszowiec" International School and Conference on the Physics of Semiconductors, Wisła 2013

Electrical Properties of SbSI/Sb₂S₃ Single and Double Heterostructures

B. TOROŃ, M. NOWAK, A. GRABOWSKI AND M. KĘPIŃSKA Solid State Physics Section, Institute of Physics, Silesian University of Technology Z. Krasińskiego 8, 40-019 Katowice, Poland

2. Mashiskiego 0, 40 015 Matowice, 1 oland

The SbSI/Sb₂S₃ single heterostructures as well as Sb₂S₃/SbSI/Sb₂S₃ and SbSI/Sb₂S₃/SbSI double heterostructures have been produced by applying CO₂ laser treatment of *p*-type SbSI single crystals. The current-voltage and transient characteristics of these heterostructures have been measured in temperatures below and above the SbSI single crystal Curie temperature ($T_c = 293$ K). The results have been fitted with appropriate theoretical formulae to determine the following types of the investigated heterojunctions: P-p SbSI/Sb₂S₃, p-P-p Sb₂S₃/SbSI. Influence of the illumination on electrical properties of SbSI/Sb₂S₃ single and double heterostructures has been reported. Fabricated new structures may be potentially applicable in electronics and optoelectronics as a new type of metal-ferroelectric-semiconductor devices.

DOI: 10.12693/APhysPolA.124.830

PACS: 74.78.Fk, 79.60.Jv, 73.40.-c, 78.66.-w

1. Introduction

The antimony sulfoidide (SbSI) single crystals are ferroelectric semiconductors having many useful properties. Among them, there are pyroelectric, pyrooptic, electrooptic and photoferroelectric effects. The crystalline SbSI has a chain structure and is one of the best piezoelectric crystals with high volume piezoelectric modulus $d_v = 1 \times 10^{-9}$ C/N and extremely high electromechanical coupling coefficient $k_{33} = 0.90$. The main properties of SbSI have been reviewed in a few monographs [1–3]. However, the properties of this material are still investigated [4, 5].

Fig. 1. Photographs of single SbSI/Sb₂S₃ heterojunction (a) as well as double Sb₂S₃/SbSI/Sb₂S₃ (b), and SbSI/Sb₂S₃/SbSI (c) heterostructures. Insets present schemes of the junction heterostructures with a band edges alignment and Fermi level position at T = 288 K ($E_{g1} = 1.85$ eV; $E_{F1} = 0.62$ eV; $E_{g2} = 1.62$ eV; $E_{F2} = 0.66$ eV; indices 1 and to 2 correspond to SbSI and Sb₂S₃, respectively).

Recently a new type of heterostructures has been produced in SbSI single crystals [6]. The $SbSI/Sb_2S_3$ heterojunctions (Fig. 1) have been fabricated by CO_2 laser irradiation of selected sections of SbSI single crystals. This irradiation evokes melting and chemical decomposition of SbSI. Laser treated sections of SbSI are composed of amorphous antimony(III) sulphide (Sb₂S₃) with energy gap 0.3 eV smaller (in room temperature) than that of SbSI [6]. Optical properties of the SbSI/Sb₂S₃ heterostructures and results of their investigations using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffractometry have been presented in [6]. In this paper electrical properties of SbSI/Sb₂S₃, SbSI/Sb₂S₃/SbSI and Sb₂S₃/SbSI/Sb₂S₃ heterostructures are reported.

2. Experimental details

The technology of sample preparation was the same as the described in [6]. The DC current-voltage characteristics of the fabricated SbSI/Sb₂S₃ heterostructures have been determined at various temperatures using the vacuum optical D2209 chamber equipped with R2205 Cryogenic Microminiature Refrigeration II-B System and K20 temperature controller (MMR Technologies, Inc.). Vacuum $(p = 10^{-4} \text{ mbar})$ has been obtained by TSH 071E turbomolecular drag pumping station (Pfeiffer). The Keithley 6517 A electrometer has been used as the bias source. The sample has been illuminated by cw laser diode to determine the influence of illumination on electrical properties of $SbSI/Sb_2S_3$ heterostructures. Measurements have been performed below and above SbSI single crystal Curie temperature $(T_c = 293 \text{ K})$.

3. Results and discussion

Figures 2 and 3 present DC current-voltage (I-U)characteristics of SbSI/Sb₂S₃ single heterojunction. The sample is polarized in forward direction when higher potential is applied to Sb₂S₃ part of the heterostructure. An important parameter, the ideality factor (n) that describes the ratio of recombination and diffusive currents in a junction, can be determined from I-U characteristics of heterostructures by fitting appropriate exponential dependence [7–9]:

$$I = I_0 \left[\exp\left(\frac{qU}{nkT}\right) - 1 \right],\tag{1}$$

where I is the measured current, I_0 is the preexponential constant, q is the electron charge, U is applied voltage, k is the Boltzmann constant, and T is the temperature. Solid curve in Fig. 2 presents the fitted theoretical dependence (1). The evaluated value of n = 207(74) is relatively high. It might be caused by the crystalline--amorphous junction type, properties of the junction materials, as well as by inhomogeneity of the investigated junction [10]. The minimum values of the ideality factor for both non-illuminated and illuminated SbSI/Sb₂S₃ junction is observed at temperature T = 293 K, i.e. at the Curie point of SbSI.

Fig. 2. Typical DC current-voltage characteristics of $SbSI/Sb_2S_3$ heterojunction (points) recorded at temperature T = 263 K with visible ferroelectric effects. Solid curve presents the fitted theoretical dependence (1). Arrows show directions of bias changes.

Fig. 3. Typical DC current-voltage characteristics of $SbSI/Sb_2S_3$ heterojunction for forward (a) and reverse polarization (b) measured (points) at different temperatures. Solid curves present the fitted theoretical dependence (2). Arrows show directions of bias changes.

Below T_c displacement of I-U characteristics has been observed (Fig. 2) due to initial poling by a DC voltage. This initial polarity determines direction of internal polarization of the SbSI. Namely, I at a given U is larger for decreasing than for increasing the voltage. Similar effect has been observed in ferroelectric (Pb,La)(Zr,Ti)O₃/ SrTiO₃:Nb diodes [10]. The influence of SbSI ferroelectric phase on I-U characteristics of SbSI/Sb₂S₃ heterostructures can also be recognized in noticeable discontinuities appearing at $U = \pm 25$ V after repolarization (Fig. 2). These discontinuities correspond to coercive field in crystalline SbSI ($E_c = 10$ kV/m [11]). This effect disappears in temperatures greater than the Curie temperature of SbSI.

To determine the type of $SbSI/Sb_2S_3$ heterojunctions, the *I*-*U* characteristics have also been fitted (Fig. 3) with power function [12]:

$$I = aU^m,\tag{2}$$

where a is proportionality factor. The exponent m should have a value approximately 2 for isotype (p-p or n-n)heterojunctions or greater than 2 for anisotype (p-n)heterojunctions [12]. Fittings the forward part of I-Ucharacteristics of SbSI/Sb₂S₃ heterojunctions with formula (2) have given values of m from 1.91(4) to 2.04(5) in the temperature range from 253 K to 333 K. Therefore, one can recognize that the investigated SbSI/Sb₂S₃ heterojunctions are isotype. The p-type SbSI single crystals have been used for laser fabrication of the investigated SbSI/Sb₂S₃ heterostructures. Hence, it leads to conclusion that fabricated heterojunctions are p-p isotype. The p-type of amorphous Sb₂S₃ has been confirmed by electrical investigations of it.

Current flowing through SbSI/Sb₂S₃ heterojunction for reverse polarization depends linearly on applied voltage and is characterized by the absence of breakdown even for high voltages (Fig. 3). Activation energy $E_{\rm a} =$ 0.417(22) eV of conductivity for reverse polarization has been determined.

Fig. 4. Photosensitivity coefficients versus bias voltage for single SbSI/Sb₂S₃ (\blacksquare) and double SbSI/Sb₂S₃/SbSI (\blacktriangle) heterostructures ($\lambda = 652$ nm; illumination intensity $I_0 = 10^{22}$ photon/(m² s); T = 313 K).

Figure 4 presents typical photosensitivity (η) , i.e. photocurrent to dark current ratio, of the fabricated heterostructures. In the case of single SbSI/Sb₂S₃ heterostructure (Fig. 1a) only the junction has been illuminated. During investigations of double SbSI/Sb₂S₃/ SbSI (Fig. 1c) heterojunctions the Sb₂S₃ part of the heterostructure has been illuminated. For negligible bias voltages one can see the influence of photovoltaic effect on η open circuit voltage of an illuminated single SbSI/ Sb₂S₃ junctions was about 2 V). For larger bias voltages photosensitivity of a single SbSI/Sb₂S₃ heterostructure is greater for reverse polarization than in the case of a typical photodiode. For forward polarization, photosensitivity of double SbSI/Sb₂S₃/SbSI heterostructure is higher than η of a single SbSI/Sb₂S₃ heterostructure. For reverse polarization, photosensitivity of SbSI/Sb₂S₃/ SbSI heterostructure decreases with increasing the negative bias voltage. It is caused by the carriers traveling through two junctions oriented oppositely (Fig. 1c).

Fig. 5. Transient characteristics of $Sb_2S_3/SbSI/Sb_2S_3$ double heterostructure recorded for different U_{CB} voltages (T = 303 K).

Static electrical properties of Sb₂S₃/SbSI/Sb₂S₃ and SbSI/Sb₂S₃/SbSI heterostructures have been measured in a two-port network electrical circuit configurations OE, OB and OC appropriate for bipolar transistors. Typical transient characteristics in OB circuit have been presented in Fig. 5. Using such characteristics the common-base current gain factor $\alpha = I_{\rm C}/I_{\rm E}$ can be calculated. In the case of Sb₂S₃/SbSI/Sb₂S₃ heterostructure $\alpha \approx 0.5$ for not polarized collector-base junction and $\alpha \approx 1$ for polarized junction have been determined. These values are comparable with those of commercially available transistors. Analyzing characteristics presented in Fig. 5, one can notice that the ratios $I_{\rm E}/U_{\rm CB}$ for double $Sb_2S_3/SbSI/Sb_2S_3$ heterostructure are significantly smaller than in the case of commercially available transistors. Simultaneously, the voltages applied to $Sb_2S_3/$ $SbSI/Sb_2S_3$ heterostructures can be significantly higher than in the case of commercially available transistors. It is caused by the high resistance of fabricated heterostructures.

4. Conclusions

Electrical properties of CO_2 laser fabricated SbSI/ Sb₂S₃, Sb₂S₃/SbSI/Sb₂S₃ and SbSI/Sb₂S₃/SbSI heterostructures have been determined for the first time. These structures are similar to diodes, transistors, as well as photodiodes and phototransistors under illumination. Current-voltage characteristics of the investigated structures have been fitted with theoretical formulae to determine the following types of the heterostructures: P-p SbSI/Sb₂S₃, p-P-p Sb₂S₃/SbSI/Sb₂S₃ and P-p-PSbSI/Sb₂S₃/SbSI. However, the relatively large ratios of recombination and diffusive currents in the junctions suppose the eventual inhomogeneity of them. Hence, the technology of laser preparation of single and multijunctions in SbSI single crystals needs additional investigations.

Hysteresis of the current–voltage characteristics of SbSI/Sb₂S₃ single junctions has been observed due to ferroelectric properties of SbSI below its Curie temperature ($T_{\rm c} = 293$ K). Also the influence of coercive electric field on current–voltage characteristics of SbSI/Sb₂S₃ single junctions has been observed for $T < T_{\rm c}$.

The fabricated double Sb₂S₃/SbSI/Sb₂S₃ heterostructures have high common-base current gain factor. Simultaneously, the ratios of $I_{\rm E}/U_{\rm CB}$ for double Sb₂S₃/SbSI/Sb₂S₃ heterostructures are significantly smaller and the voltages applied to these heterostructures can be significantly higher than in the case of commercially available transistors. Electrical properties of the CO₂ laser fabricated SbSI/Sb₂S₃, Sb₂S₃/SbSI/Sb₂S₃ and SbSI/Sb₂S₃/SbSI heterostructures are photosensitive. It may lead to potentially new applications in electronics and optoelectronics.

Acknowledgments

One of the authors (B.T.) is a grant holder in "SWIFT" project POKL.08.02.01-24-005/10 co-funded by the European Union under the European Social Fund. The work was partially supported by NCN grant No. DEC--2011/01/B/ST5/06273.

References

- V.M. Fridkin, *Photoferroelectrics*, Springer-Verlag, New York 1979.
- [2] V.M. Fridkin, Ferroelectric Semiconductors, Consultants Bureau, New York 1980.
- [3] E.I. Gerzanich, V.M. Fridkin, $A_5B_6C_7$ type Ferroelectrics, Nauka, Moskva 1982 (in Russian).
- [4] H. Akkus, A.M. Mamedov, Centr. Europ. J. Phys. 5, 25 (2007).
- [5] M. Nowak, P. Szperlich, Ł. Bober, J. Szala, G. Moskal, D. Stróż, Ultrason. Sonochem. 15, 709 (2008).
- [6] B. Toroń, M. Nowak, A. Grabowski, M. Kępińska, J. Szala, T. Rzychoń, *Proc. SPIE* 8497, 84971K-1 (2012).
- [7] S.M. Sze, K.K. Ng, *Physics of Semiconductor De*vices, Wiley, New Jersey 2007.
- [8] K.E. Avdjian, Mater. Res. Soc. Symp. Proc. 692, 491 (2002).
- [9] H. Yang, H.M. Luo, H. Wang, I.O. Usov, N.A. Suvorova, M. Jain, D.M. Feldmann, P.C. Dowden, R.F. DePaula, Q.X. Jia, *Appl. Phys. Lett.* **92**, 1 (2008).
- [10] Y. Watanabe, Phys. Rev. B 59, 11257 (1999).
- [11] E. Fatuzzo, G. Harbeke, W.J. Merz, R. Nitsche, H. Roetschi, W. Ruppel, *Phys. Rev.* **127**, 2036 (1962).
- [12] T. Dam, L. Stourac, Czech. J. Phys. B 27, 1409 (1977).