Intershell Exchange Interaction in Charged GaAlAs Quantum Dots

M.R. Molasa,b,∗, A.A.L. Nicoletb, M. Potemskib and A. Babinskia

aInstitute of Experimental Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warszawa, Poland
bLaboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA
25, av. des Martyrs, 38042 Grenoble, France

Optical anisotropy of charged excitons and biexcitons related to the single-particle s- and p-shell interactions in GaAlAs/AlAs quantum dots is investigated. The polarization-dependence and time-resolved microphotoluminescence measurements were performed. Cross-correlation measurements were used to identify the ladder of excitonic states and allowed us to show two cascade pathways, including the spin singlet and triplet states of charged excitons and biexcitons. The fine structure of the studied states is described and analysed in terms of electron-electron, hole-hole, and electron-hole exchange interactions.

DOI: 10.12693/APhysPolA.124.785
PACS: 78.67.Hc, 71.35.−y, 78.55.Cr, 71.70.Gm

1. Introduction
Anisotropic electron–hole (eh) exchange interactions in quantum dots (QDs) are of great interest because of their potential use in information processing applications [1]. Moreover, multie excitonic complexes in single QDs are also considered to be interesting candidates for multi-photon emitters as they can emit correlated photons depending on the number of excitons they contain. In practice, a three-photon and four-photon cascade have been demonstrated in the case of a tricexciton and a quadrexciton [2, 3]. The quadexciton–tricexciton cascade recombination process in single QDs with an asymmetric confining potential is equivalent to the biexciton–exciton cascade process. The former process occurs at the first single-particle (SP) excited state — the s-shell, and the second at the SP ground state — the s-shell [4].

The exchange interaction in charged multie excitonic complexes between inter-subshell spins becomes more pronounced than the one in the case of neutral multie excitonic complexes due to the presence of an excess of carriers. As a result, several split emission lines due to the charged excitonic complexes have been observed in the micro-photoluminescence (μPL) spectra [5–7]. In particular, two decay pathways involving a different spin configuration of charged biexciton states in single GaAs QDs have been identified and described [8].

In this study, we show two decay pathways in cascades involving a spin singlet and a spin triplet state of charged excitons and biexcitons. The fine structure of the investigated states is described and analysed in terms of electron–electron (ee), hole–hole (hh), and eh exchange interactions.

2. Experimental procedure
The active part of the structure used for the experiments was intentionally designed as a type-II GaAs/AlAs blayer structure. Previous research showed the existence of GaAlAs islands which form at the barrier of AlAs with an extremely low surface density of about 10^6 cm$^{-2}$ with an estimated lateral diameter of about 50 nm. A specially separated set of lines related to the emission from single GaAlAs/AlAs QDs was observed in the μ-PL spectrum in a broad energy range (1.56–1.68 eV) [9–11].

The investigated sample was located on a cold finger of a continuous flow cryostat at liquid helium temperature ($T = 4.2$ K). A tunable Ti:sapphire laser set at $\lambda = 725$ nm was used for excitation. The light was then tightly focused by means of a microscope objective (spot size around 1 μm2). The μ-PL was collected via the same microscope objective, dispersed by a 0.5 m monochromator and detected by a charge-coupled device camera cooled down with liquid nitrogen [12].

Polarization-resolved experiments were implemented using a motorized rotating half-wave plate combined with a fixed linear polarizer in front of the spectrometer in order to avoid detection artifacts related to the anisotropic response function of the setup. For excitonic lines with small anisotropic splitting, we determined the value of the splitting by fitting a Gaussian curve as a function of the polarization angle and then a cosine square function to obtain energetic position of lines [9].

3. Results
The μ-PL spectrum of a typical charged GaAlAs QD as a function of excitation power of the laser is presented in Fig. 1. The investigated dot was excited at an energy below transitions ($I_{GaAs} - I_{GaAs}$, X_{GaAs}^X, $X_{AlAs}^X - I_{GaAs}$) in the type-II GaAs/AlAs blayer [9, 11]. In this so-called quasi-resonant excitation regime, eh pairs are created directly in the QD, conditions which favor neutral charge states [13]. However, additional effects like e.g. doping of the structure or a different lifetime of carriers (electrons and holes) lead to the observation of lines related to charged states.

Identification of the sign of singly charged excitons labelled in Fig. 1 is based on basic arguments related to...
Fig. 1. Excitation-power evolution of the μ-PL spectra from a single GaAlAs/AlAs dot measured at low temperature without polarization resolution. The spectra are rescaled and shifted for clarity purpose.

Fig. 2. (a) The μ-PL spectra of a single GaAlAs QD. Polarization axes: π_{x} (violet curve) and π_{y} (red curve) along crystallographic axes [110] and [110], respectively. (b) Color plot presenting μ-PL spectra of the same QD measured using different linear polarization of detection. The 45$^\circ$ and 135$^\circ$ correspond to the crystallographic axes [110] and [110].

In this paper, we focus on the analysis of the fine structure of the positively charged states related to the s- and p-shell emissions. All investigated QDs presented similar emission patterns. Excitonic and biexcitonic transitions split into pairs of linearly polarized lines, exhibiting the same absolute value with opposite signs. For the QD with the spectrum shown in Fig. 2 the exchange interaction splitting of the neutral state equals to 16 μeV, which is relatively small in comparison with the charged transitions presented in Fig. 2.

The emission lines due to the recombination of positively charged multie excitons have a more complex fine structure. Figure 2a shows a typical μ-PL spectrum of charged GaAlAs QD as a function of linear polarizations along the principal axes of the QD. The identification of studied lines was done by cross-correlation measurements of all investigated lines [15]. Emission lines X^+, $2X^+$ and X^{++}, $2X^{++}$ belong to separate cascade pathways. Transitions, X^{++}, $2X^+$, and $2X^{++}$, split into doublets partially linearly polarized along the same two principal crystallographic axes [110] and [110] (see Fig. 2), which have been identified for the X emission in [9]. In order to discuss the energy structure of the two cascade pathways involving singlet and triplet states of charged excitons and biexcitons, we use the many-carrier Hamiltonian equation for QDs given in [7]. This equation is used to describe levels splitting by the exchange interaction for the states involved in the investigated cascades. It should be noted that the degeneracy of the p-shell is important for the spin states. We assumed that the splitting of p orbitals is larger than the $p_{x} - p_{y}$ hole exchange energy [16].

Theoretical description of the fine structure of investigated states is schematically presented in Fig. 3. We identified two separate cascade pathways of excitonic emissions involving states X^{++}, $2X^{+}$ (Fig. 3a), and X^{+}, $2X^{++}$ (Fig. 3b) related to the s and p-shell. The fine structure of transitions shown in Fig. 2a, involving the spin triplet state of a charged exciton (X^{++}) and the spin singlet state of a charged biexciton ($2X^+$) are related to the X^{++} state. The structure of $2X^+$ transition results from the splitting of the final state of an s-shell electron (e_{s}), an s-shell hole (h_{s}), and a p-shell hole (h_{p}). The final state consists of three interacting carriers: $e_{s}h_{s}h_{p}$. The two holes form a spin-singlet ($J_{0} = 0$) and a spin-triplet ($J_{0} = 3$) states split by the hh exchange energy $V_{s,s}^{eh}$. In addition, the eh exchange interaction splits the triplet states into three doublets separated by $V_{s,p}^{eh} = (V_{s,s}^{eh} + V_{s,p}^{eh})/2$, which includes the eh exchange energies between respectively holes and the e_{s} electron. It is known that the hh (ee) isotropic exchange energy is larger than the eh exchange energy by one order of magnitude [3]. In optical transitions, the lowest triplet states $J_{z} = 7/2$ in which the three particles have parallel spins, is forbidden. Note that in our experiments we cannot identify the $2X^+$ transition which is related to the recombination of the spin single state (dashed blue transition presented in Fig. 3a). Opposite to the case of the $2X^+$ emission, the X^{++} structure transition results from the splitting of the initial state (no interaction is present in the final state due to h_{p}). The anisotropic
both states are given by an ee exchange energy V_{eh} and an eh exchange energy V_{he} similar to the ne structure observed in cascade pathway (see Fig. 2). The obtained ne structure of the $2X^+$ structure consist of five carriers: e_p,p_e,e_h,h_p. The final state of the $2X^+$ transition is related to the initial state of the X^+ emission for which no splitting is observed (see Fig. 2). The obtained fine structure of the $2X^+$ state is similar to the fine structure observed in cascade pathway $2X^+ \rightarrow X^+$. The singlet-triplet energy separations of both states are given by an ee exchange energy V_{ee}. The energy difference between the triplet states is given by an eh exchange energy $V_{\text{eh}} = (V_{\text{eh}} + V_{\text{he}})/2$ for the $2X^+$ transition.

The analysis of the fine structure of the X^+ and the $2X^+$ transition has been performed for 20 single GaAlAs QDs. The average value for V_{ee} is equal to 119 μeV and follows the pattern as observed previously for GaAs QDs [8]. In the case of V_{eh}, the average energy splitting is equal to 63 μeV which is nearly 50% lower than the splitting reported for GaAs dots in former studies [8]. This lower value could be due to different confining potentials, alloy compositions of investigated GaAs/AlAs QDs and previously studied GaAs/GaAlAs QDs [8], resulting in differences in ladders of excitonic states.

4. Conclusions

We measured 20 single charged GaAlAs/AlAs QDs in order to study the optical anisotropy of charged excitons and biexcitons related to the s- and p-shell emission. The attribution of lines was based on cross-correlation measurements between excitonic transitions. The different spin configurations of charged excitons and charged biexcitons were analysed in the light of the polarization-dependence. The observed fine structure splitting (FSS) of the investigated emission lines was described and analysed in terms of the ee, hh, and eh exchange interactions. The obtained average of the FSS values were presented and compared with previously reported results for the GaAs/GaAlAs QDs [8]. We argue that studies on the decrease of the FSS (e.g. by using an external magnetic field) can open the opportunity of the creation of two separate pairs of polarization-entangled photons, which can be of potential use in information processing applications.

Acknowledgments

The work has been supported by the Foundation for Polish Science International Ph.D. Projects Programme co-financed by the EU European Regional Development Fund and by EuroMagNET II (JRA8) under the EU contract 228043. M.M. kindly acknowledges the National Science Center (doctoral scholarship contract no. UMO-2013/08/T/ST3/00665) for financial support for his Ph.D.

References