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Photosensitive n-CdO/p-InSe heterojunctions were developed and studied for the �rst time. The hetero-
junctions were fabricated by dc reactive magnetron sputtering of CdO thin �lms onto the freshly cleaved p-InSe
single-crystal substrates (0 0 1). Surface morphology of the obtained �lms was studied by means of atomic force
microscopy. From the X-ray di�raction result it is shown that the CdO �lm is polycrystalline with cubic structure.
The mechanisms of current transport through the space-charge region under forward and back biases were estab-
lished by investigation of temperature dependences of the I�V characteristics. The main photoelectric parameters
and the photosensitivity spectra were measured at room temperature.
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1. Introduction

Indium monoselenide (InSe) belongs to AIIIBVI lay-
ered semiconductor crystals [1]. It presents a layered
structure, exhibiting weak �van der Waals� bonding be-
tween separate, covalently bonded Se�In�In�Se layers
[1, 2]. Such layered crystal structure results in strong
anisotropy of its properties [1]. InSe crystals can be eas-
ily cleaved along the basal plane. Atomically smooth
surface of the cleaved facet features a low density of sur-
face states (≤ 1010 cm−2) and small value of root-mean-
-square roughness (≈ 0.05 nm) [3, 4]. The absence of
dangling bonds on InSe cleaved surface makes it possi-
ble to use this semiconductor as a substrate for growing
molecular [5] and metal [6] nanostructures, as well as fab-
rication of heterostructures on the basis of semiconductor
materials with di�erent symmetries and lattice spacings
[7�10].
Cadmium oxide (CdO) is a promising transparent con-

ducting oxide [11, 12]. It has attracted much attention
because of its high optical transmittance and low resistiv-
ity [13�15]. CdO is a wide bandgap semiconductor and
exhibits n-type conductivity [16].
Thin �lms of CdO have been used in wide variety of

applications such as photovoltaic cells [17�20], transpar-
ent electrodes [21], photodiodes [22] and phototransis-
tors [23].
CdO is of particular interest because of its applica-

tion as a wide bandgap �window� layer in heterojunctions
[14, 15, 24].
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In the present study, we developed new photosensi-
tive n-CdO/p-InSe heterojunctions. We report on sur-
face morphology of CdO thin �lms deposited onto p-InSe
substrates, as well as electrical and photoelectrical prop-
erties of the obtained heterojunctions.

2. Experimental methods

We used p-InSe single crystals as substrates of the het-
erojunctions. The InSe single crystals were grown by
the Bridgman method and doped by adding cadmium
in order to obtain p-type conductivity. The content of
cadmium dopant was 0.01%. At room temperature the
concentration of uncompensated acceptors and majority
carrier mobility were measured to be p = 1014 cm−3 and
µp = 100 cm2/(V s), respectively.
The CdO thin �lms were deposited onto the freshly

cleaved p-InSe single-crystal substrates (0 0 1) with typi-
cal dimensions 5×5×0.3 mm3 by dc reactive magnetron
sputtering, as it had been described in [25]. High purity
indium (In) was used as a contact material. Figure 1
shows the schematic diagram of the n-CdO/p-InSe het-
erojunction.
The crystal structure of the developed heterojunction

was investigated using an X-ray di�raction (XRD) sys-
tem (DRON-2.0 di�ractometer) with a Cu Kα source.
LATTIK-KARTA software was used to analyze the ob-
tained XRD patterns.
The current�voltage (I�V ) characteristics of the het-

erojunction were measured in the temperature range
254÷ 332 K using a �Schlumberger SI.1255� setup.
Photosensitivity spectra of the n-CdO/p-InSe hetero-

junctions were measured by means of MDR-3 monochro-
mator (reciprocal linear dispersion 2.6 nm/mm) at room
temperature.
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Fig. 1. Schematic diagram of the n-CdO/p-InSe het-
erojunction.

Surface morphology of the CdO thin �lms was studied
by atomic force microscopy (AFM) using Nanoscope IIIa
Dimension 3000SPM (Digital Instruments).

3. Results and discussion

Figure 2 shows the XRD pattern of the n-CdO/p-InSe
heterojunction. In the XRD pattern, besides the re�ec-
tions of the InSe substrate, one can see the re�ections of
CdO: 111, 200, 220, 311, 222 (the peaks are indicated by
arrows).

Fig. 2. XRD pattern of the n-CdO/p-InSe heterojunc-
tion. The peaks of CdO are indicated by the arrows.

The XRD analysis revealed that the structure of the
InSe substrate had the following lattice constants: a =
4.002 Å, c = 24.9678 Å. The CdO �lms were polycrys-
talline with cubic structure. The lattice constant a was
evaluated from the XRD patterns: a = 4.6954 Å. The
data obtained from the XRD analysis are in good agree-
ment with other studies [11, 14, 26].
It should be noted that the (0 0 1) surface of the InSe

layered crystal is a natural cleaved facet. Since the inter-
action between the adjacent layers is of �Van der Waals�
type, there are very few dangling bonds and their role
is insigni�cant. This peculiarity of the bonds determines
the inert properties of the surface. Previous studies on

surface morphology of the cleaved facets of InSe crys-
tals showed that the surface is atomically smooth [3, 4].
The 3D atomic force microscopy (AFM) image of the
CdO thin �lm deposited onto p-type InSe is shown in
Fig. 3. As seen in Fig. 3, the surface of the CdO �lm is
not smooth. The root-mean-square value of the surface
roughness was evaluated to be 0.432 nm.

Fig. 3. 3D AFM image of CdO deposited onto p-type
InSe.

The experimental results of the investigation of I�V
characteristics of the n-CdO/p-InSe heterojunctions can
be described by the following equation:

J = Js

[
exp

(
qU

nkT

)
− 1

]
, (1)

where Js is the saturation current, q is the electron
charge, U is the applied voltage, n is the ideality factor,
k is the Boltzmann constant, T is the temperature. The
value of n is di�erent for di�erent current mechanisms. In
order to de�ne it, as follows from Eq. (1), it is necessary
to conduct the measurements of the forward branches of
the I�V characteristics at di�erent temperatures.
These dependences of the n-CdO/p-InSe heterojunc-

tion are plotted and shown in Fig. 4. They were inves-
tigated in the temperature range from 254 K to 332 K.
In the semilogarithmic coordinates all the curves have
linear segments in the voltage interval 0÷ 0.4 V. By tak-
ing into account the slope of the linear segments it is
possible to de�ne the ideality coe�cient (n) of the for-
ward branches of the I�V characteristics at each studied
temperature. The parallel shift of the I�V characteris-
tics, which occurs during the decrease of temperature,
indicates that forward current is temperature indepen-
dent. This is typical for tunneling. But tunneling of
carriers through the p�n junction at low forward bias is
improbable, because the barrier region is too thick and
prevents tunneling. Tunnel-recombination model can be
an alternative explanation of the observed dependences
of the forward current. In this model the defects of the
heterointerface are determinant. The defects can be re-
sulted by crystal lattice mismatch of CdO and InSe. The
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Fig. 4. The I�V characteristics of the n-CdO/p-InSe
heterojunctions under forward bias in the semilogarith-
mic scale at temperatures T : 1 � 254, 2 � 260, 3 �
277, 4 � 296, 5 � 313, 6 � 332 K.

value of n at low current density exceeds 2 and is equal
to 2.45 at room temperature.
It is also seen from Fig. 4 that at high current the

curves become almost saturated. In this case, charge
carrier transport occurs mostly through series resistance
and does not re�ect the real current mechanism through
the rectifying barrier.
Temperature dependences of the I�V characteristics

under back bias, which re�ect the current through the
space-charge region, are plotted in log�log scale and
shown in Fig. 5.

Fig. 5. The I�V characteristics of the n-CdO/p-InSe
heterojunctions under back bias in log�log scale at tem-
peratures T : 1 � 254, 2 � 260, 3 � 277, 4 � 296,
5 � 313, 6 � 332 K.

As seen in Fig. 5, the dependences of current on bias
are linear with di�erent slopes. It means that they can be
described by a power function I ∼ Um. At room temper-
ature the I�V characteristic has 3 di�erent slopes with
m = 1, 2, 3. Such behaviour of the I�V characteristic of
the space-charge region is typical for the currents limited
by space charge.
The n-CdO/p-InSe heterojunctions produced the

open-circuit voltage Voc = 0.53 V and the short-

-circuit current Isc = 6 mA cm−2 under illumination of
100 mW cm−2.
Analysis of the photosensitivity spectra of the n-CdO/

p-InSe heterojunctions allowed us to establish their pecu-
liarities and detect a thin structure in the long-wave edge.
The photosensitivity spectrum is shaped as a band, which
is abruptly limited in terms of energy from both sides
(Fig. 6). The maximum is observed at 2.48 eV which cor-
responds with the band-gap energy of CdO [16, 27�29].

Fig. 6. The photosensitivity spectrum of the n-CdO/
p-InSe heterojunction.

The light with the energy hν < Eg1 (Eg1 is the band-
-gap energy of the frontal semiconductor CdO) is ab-
sorbed directly in the near-surface region of the base
semiconductor Eg2 (InSe), where the p�n junction re-
gion is simultaneously located. In this heterojunction the
�window� e�ect is used. It means that the light of cer-
tain energy (Eg2 < hν < Eg1) passes through the frontal
semiconductor without obstruction, and the regions of
photogeneration and space-charge coincide. The pho-
togenerated carriers are separated by electric �eld and
form the long-wave edge of the photosensitivity. In the
long-wave edge of the spectrum, one can observe a sharp
maximum, which is of exciton nature.

4. Conclusion

We developed new photosensitive n-CdO/p-InSe het-
erojunctions. The heterojunctions were fabricated by dc
reactive magnetron sputtering of CdO onto the freshly
cleaved p-InSe single-crystal substrates (0 0 1). The anal-
ysis of AFM images of the CdO thin �lm revealed that the
surface is nanostructured. The root mean square value
of the surface roughness was evaluated to be 0.432 nm.
The mechanisms of current transport through the

space-charge region under forward and back biases were
established by the investigation of temperature depen-
dences of the I�V characteristics. The main mechanism
of current transport through the potential barrier is tun-
nel recombination. This is resulted by the mismatch of
crystal lattice constants of CdO and InSe at the heteroin-
terface. Under back bias the main currents are limited
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by the space charge and described by a power function
dependence.
The developed heterojunctions are photosensitive.

Their spectrum is limited in the scale of photon ener-
gies by the light absorption in the oxide and the base
semiconductor. The long-wave edge of the spectrum has
a sharp peak at room temperature. It can be explained
by the in�uence of not only the fundamental but also ex-
citonic light absorption in InSe crystal. It is worth noting
that the n-CdO/p-InSe heterojunctions were fabricated
without the optimization of technological parameters and
additional treatments. It is expected that the control-
lable change of technological parameters of the CdO thin
�lms' deposition and annealing of the heterojunctions in
vacuum can enhance the e�ciency of the photoelectric
conversation.
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