
Vol. 124 (2013) ACTA PHYSICA POLONICA A No. 4

Polaron E�ects on Nonlinear Optical Properties of a

Hydrogenic Impurity in a CdTe/ZnTe Quantum Dot
A. Azhagu Parvathia and A. John Peterb,∗

aDept. of Physics, VV Vanniaperumal College for Women, Virudhunagar-626 001, India
bDept. of Physics, Govt. Arts College, Melur-625 106, Madurai, India

(Received January 17, 2012; in �nal form July 24, 2013)

Hydrogenic donor impurity binding energy is obtained in a ZnxCd1−xTe/ZnTe strained quantum dot taking
into account the phonon con�nement e�ect. The interaction of the electron and the phonon modes are expressed
in terms of the Fröhlich interaction Hamiltonian. The binding energy is obtained for various Zn composition using
the Aldrich�Bajaj e�ective potential. Calculations have been obtained using the Bessel function as an orthonormal
basis for di�erent con�nement potentials of barrier height considering the internal electric �eld induced by the
spontaneous and piezoelectric polarizations. Polaron induced linear and third-order nonlinear optical absorption
coe�cients and the changes of refractive index as a function of incident photon energy are observed. Our results
coincide with the recent observations of a hydrogenic impurity binding energy in a CdTe/ZnTe quantum dot solved
analytically. It is observed that the potential taking into account the e�ects of phonon makes the hydrogenic
binding energies larger than the obtained results using a Coulomb potential screened by a static dielectric constant
and the optical properties of hydrogenic impurity in a quantum dot are strongly a�ected by the con�ning potential
and the quantum size. It is found that the geometry of the quantum dot, zinc concentration and the e�ect of
phonon have a great in�uence on the absorption coe�cient and refractive index changes of the dot. It is also
observed that the magnitude of the absorption coe�cients enhances with the inclusion of phonon e�ect.
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1. Introduction

Nonlinear optical properties in low dimensional semi-
conductor systems such as quantum wells, quantum well
wires, and quantum dots are of considerable interest due
to their potential applications in device fabrications; fur-
ther they can be easily fabricated with the latest and
sophisticated techniques [1�3]. Among the nonlinear op-
tical properties, the absorption coe�cients, changes of
refractive index and the interband emission energy are
given due attention in quantum dots [4, 5]. Sahin [6] in-
vestigated the nonlinear optical properties of a one- and
two-electron systems in a spherical quantum dot with
and without a hydrogenic donor impurity. Very recently,
some optical nonlinear properties such as the absorption
coe�cients and refractive index changes of a hydrogenic
impurity in an ellipsoidal quantum dot have been inves-
tigated, using the compact-density matrix formalism and
an iterative method [7].
Wide band gap II�VI semiconductor nanostructure

materials have been used for practical applications of op-
toelectronic devices nowadays operating in the visible re-
gion [8]. Among these II�VI semiconductors, CdTe/ZnTe
systems have attracted much attention for optoelectronic
devices with the short wavelength ranges [9] and as de-
vices for spin transfer [10�12]. Interband transitions in
CdTe/ZnTe square quantum wells have been investigated
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and determined from optical gain spectra at di�erent
temperatures by varying well width of CdTe [13]. With
the recent advanced technology, the electron�phonon in-
teraction in quantum dots plays an important role in
polar crystals [14]. The interaction of electrons with
phonons constitute a quasi-particle so called as bound
polaron, ultimately its e�ective mass increases in a po-
lar semiconductor. The recent results show that these
interactions are more important in electronic and opti-
cal properties when the dimensions are reduced [15, 16].
This reduction in dimensionality shows the quantum size
e�ects on optoelectronic properties. The phonon con�ne-
ment e�ect of the Mot�Wannier exciton binding energy in
a quantum wire has been discussed [17]. Con�nement of
carriers in quantum dots guides the creation of discrete
energy levels. Eventually, the size, shape and the con-
�nement potential barrier will considerably change the
physical properties. The binding energies of excitons in
quantum well structures in the in�uence of uniform elec-
tric �eld have been investigated by taking into account
the exciton longitudinal optical phonon interaction [18].

In the present paper, the hydrogenic impurity binding
energy is investigated in a CdTe/ZnTe polar quantum
dot nanostructure. The interaction of the electron and
the phonon modes are expressed in terms of the Fröh-
lich interaction Hamiltonian. Some optical properties
of hydrogenic impurity in a strained ZnxCd1−xTe/ZnTe
quantum dot with and without the inclusion phonon as-
suming a spherically con�nement potential for various Zn
concentration have been discussed. Variation of donor
binding energy as a function of dot radius for various Zn
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content has been performed using single band e�ective
mass approximation. Calculations have been obtained
using the Bessel function as an orthonormal basis for dif-
ferent con�nement potentials of barrier height consider-
ing the internal electric �eld induced by the spontaneous
and piezoelectric polarizations. In Sect. 2, the theoretical
model used in our calculations of obtained eigenfunctions
and eigenenergies of electron states, the linear and non-
-linear optical absorption coe�cients and the refractive
index changes have been discussed. The results and dis-
cussion are presented in Sect. 3. A brief summary and
results are presented in the last section.

2. Model and calculations

2.1. Polaron induced binding energy

We consider a hydrogenic impurity located at the cen-
tre of a ZnxCd1−xTe spherical dot con�ned by a spherical
potential well (ZnTe). The con�ning potential is assumed
to be zero inside and V outside. Within the framework
of single band e�ective mass approximation, the Fröh-
lich interaction Hamiltonian of the system, a strained
ZnxCd1−xSe/ZnSe quantum dot with the radius R, can
be written as

H = He +Hph +He−ph, (1)
where

He = − ~2

2m∗ep

∇2 + VAB(r) + V (r), (2)

where V (r) is the strain induced con�nement potential
of the particle and VAB(r) is the e�ective Coulomb po-
tential as given below. The strain induced con�nement
potential can be written as a sum of energy band o�sets
of the conduction band and the static electric potential
induced by the built-in electric �eld.
The strength of the built-in electric �eld F caused by

the spontaneous and piezoelectric polarizations in the
ZnxCd1−xTe strained quantum dot expressed as [19]:

F =

{ ∣∣∣PZnCdTe
SP +PZnCdTe

PE −PZnTe
SP

ε0εZnCdTe
e

∣∣∣ , r < R,

0, r ≥ R.
(3)

Here, εZnCdTe
e is the electronic dielectric constant of

ZnCdTe and PZnCdTe
PE , PZnCdTe

SP and PZnTe
SP are the piezo-

electric polarizations and spontaneous polarizations of
ZnCdTe and the spontaneous polarization of ZnTe, re-
spectively. The above values can be generally calcu-
lated by the polarity of the crystal and the strains of
the quantum nanostructure. Since the wurtzite crystal
lattice of ZnCdTe and ZnTe lack inversion symmetry, the
heterostructure will have spontaneous polarization (P SP)
and the piezoelectric polarization (PPZ) due to strain
caused by the lattice mismatch between CdTe and ZnTe
material.
The piezoelectric polarization along the c-axis is given

by
PPZ = e31(εxx + εyy) + e33εzz (4)

with εxx = εyy = a(ZnTe)−a(ZnCdTe)
a(ZnTe) and εzz = −2C13

C33
εxx.

The piezoelectric polarization is given by

PPZ = 2εxx

(
e31 − ε33

C13

C33

)
. (5)

Thus the total polarization is given by
P = PPZ + P SP. (6)

The band gap of the material is given by [20]:
Eg(ZnxCd1−xTe) = 1.51 + 0.45x+ 0.31x2 [eV] . (7)

The above expression of band gap has been obtained
by varying Zn concentration in ZnCdTe/ZnTe quantum
dot (inset in Fig. 1). The quadratic term in Eq. (7) is
correlated with the bowing of optical band gap.

Fig. 1. Variation of binding energy as a function of dot
radius for a Cd1−xZnxTe/ZnTe quantum dot for vari-
ous Zn content; the inset shows the variation of barrier
height with the Zn concentration.

The electron�polaron mass is given by
m∗ep = m∗j (1 + α/12)(1− α/12). (8)

The electron e�ective mass, m∗j , in the heterosystem, is
given by

m∗j =

{
m∗I , r < R,

m∗II, r ≥ R.
(9)

m∗I andm
∗
II denote the e�ective mass of the inside (CdTe)

and outside the quantum dot (ZnTe).
The phonon part of Eq. (1) is given by

Hph =
∑
q

~ωLOa
+
q aq (10)

and the electron�LO phonon interaction (He−ph) is given
by [7, 21]:

He−ph =
∑
q

(
Vq e iqraq + V ∗q e− iqra+

q

)
, (11)

where

Vq = − i~ωLO

q

(
4παe

Ω

)1/2( ~
2m∗epωLO

)1/4

(12)

with
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αe =
e2

2~ωLO

(
2m∗epωLO

~

)1/2(
1

ε∞
− 1

ε0

)
, (13)

where a+
q and aq are the creation and annihilation opera-

tors for the LO phonon, respectively. ~ωLO is the energy
of the optical phonon. αe is the electron�phonon coupling
constant which depends on the material parameter taken
into account. Ω is the volume of the quantum dot. ε0

and ε∞ are the static and optical dielectric constant.

Then the eigenfunctions of the Hamiltonian in the ab-
sence of the impurity are

ψ(ρ, ϕ, z) =

{
N1 e ikz e± i lφJl(rnlr), r < R,

N1
Jl(rnlR)
Kl(bnlR) e ikz e± i lφKl(bnlr), r ≥ R,

(14)
where N1 is the normalization constant,

rnl =

√
2m∗epEnlk

~2
, (15)

and

bnl =

√
2m∗ep(V − Enlk)

~2
, (16)

where rnl is the n-th root satisfying the equation

rnl
dJl(rnlr)

d(rnlr)

∣∣∣∣
r=R

= bnl
Jl(rnlr)

Kl(bnlr)

dKl(bnlr)

d(bnlr)

∣∣∣∣
r=R

. (17)

Enlk is the lowest binding energy calculated by solving
the transcendental equation
√
EJ1

(√
ER
)
K0

(√
(V − E)R

)
=
√

(V − E)K1

(√
(V − E)R

)
J0

(√
ER
)
. (18)

This �xes the values of rnl and bnl for the lowest val-
ues of Enlk after matching the wave functions and their
derivatives at boundaries of the quantum dot along with
the normalization.

The electron longitudinal-optical phonon interaction is
an important factor determining the physical properties
of any polar crystal. The binding energies will be en-
hanced when a screened Coulomb potential is considered.
The Aldrich�Bajaj potentials have proven to describe
very well the electron�phonon interaction. We consider
the e�ective Coulomb potential derived by Aldrich and
Bajaj [22] taking into account the polaronic e�ects as

VAB(r) = −εI − εII

εIεIIR
− e2

εr
− e2

2ε′r
exp(−βr)

+
eβ

2ε′
exp(−βr)

1 + α/12 + α/(4 + α/3)
, (19)

where

β =

(
2m∗epω

~

)1/2

, (20)

α =
e2β

2ε′~ω
, (21)

and
1

ε′
=

1

ε∞
− 1

ε0
, (22)

where ω is the longitudinal optical phonon frequency and

ε∞ is the high dielectric constant of CdTe material.
If the impurity is introduced, the variation trial wave

function is given by
ψ(ρ, ϕ, z) ={

N2 e ikz e± i lφJl(rnlr) exp(−ηr), r < R,

N2
Jl(rnlR)
Kl(bnlR) e ikz e± i lφKl(bnlr) exp(−ηr), r ≥ R,

(23)
where N2 is the normalization constant and η is the vari-
ational parameter. We calculate the ground state energy
E by �nding out the expectation value of the energy of
the Hamiltonian, Eq. (1), as

〈E〉 = min
η

〈ψ|H|ψ〉
〈ψ |ψ 〉

. (24)

The donor binding energy Eb is calculated using the
following equation:

Eb = Esub − 〈Hmin〉 , (25)
where Esub is the lowest binding energy without the im-
purity. First, we concentrate on the calculation of the
electronic structure of an impurity in a quantum dot
by calculating their subband energy (Esub) and subse-
quently its binding energy with a variational technique.
For this purpose, we use the single band e�ective mass
approximation and expand the electron wave function in
an appropriate set of orthonormal functions. Then, by
using the density matrix approach [22], within a two-
-level system approach, the explicit expressions for the
nonlinear optical properties such as the nonlinear optical
absorption and the changes of refractive index are com-
puted in a saturation limit.

2.2. Linear and non-linear optical absorption

The optical absorption calculations are based on the
Fermi golden rule from which the total absorption coef-
�cient is given by [23]:

α(ω, I) = α1(ω) + α3(ω, I). (26)

For any electronic system transitions, these calcula-
tions are imperative to compute the di�erent optical
properties. However, the dipole transitions are allowed
using the selection rules ∆l = ±1 where l is the angular
momentum quantum number. In addition to that the os-
cillator strength which is related to the dipole transition,
expressed as

Pfi =
2m∗ep

~2
∆Efi |Mfi|2 , (27)

where ∆Efi = Ef −Ei refers the di�erence of the energy
between the lower and upper states. Mfi = 2〈f |R|i〉 is
the electric dipole moment of the transition from i state
to f state in the quantum dot. The observation of os-
cillator strength is imperative especially in the study of
optical properties and they are related to the electronic
dipole allowed absorptions. Moreover, the outcome of the
results will be viewed on the �ne structure of the optical
absorption.
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The optical absorption coe�cient is given by

α1(ω) =
4παfσs
nre2

~ω |Mfi|2 δ(Ef − Ei − ~ω) (28)

and

α3(ω, I) = −32π2αfσsI

n2
re

2~Γff
~ω |Mfi|2 δ(Ef − Ei − ~ω)

×
[
1− |Mff −Mii|2

4 |Mfi|2

× (~ω − Efi)2 − (~Γfi)2 + 2Efi(Efi − ~ω)

E2
fi + (~Γfi)2

]
,

(29)
where σs is electron density of the quantum dot, nr is
the refractive index of the semiconductor, ω is the an-
gular frequency of the incident photon energy, αf is the
�ne structure constant and Ei and Ef denote the con-
�nement energy levels for the ground and the �rst excited
state, respectively. The above two equations are linear
and third order nonlinear optical absorption coe�cients.
From Eq. (28) and Eq. (29), the energy-conserving delta
function by the Lorentzian is given by

δ(Ef − Ei − ~ω) = lim
Γ→0

Γ

π [(Ef − Ei − ~ω)2 + Γ 2]
,

(30)
where Γ is the line width of the hydrogenic impurity and
in our calculation we use Γ = 0.1 meV.
The susceptibilities are related to the refractive index

changes as
∆n(ω)

nr
= Re

(
χ(ω)

2n2
r

)
, (31)

where nr is the refractive index of the material. The
analytic expressions of the linear and nonlinear changes
in the refractive index are given by

∆n(1)(ω)

nr
=
σse

2

2εr
|Mfi|2

~ωfi − ~ω
(Efi − ~ω)2 + (Γfi)2

(32)

and
∆n(3)(ω)

nr
= − µ0cI

4εrn2
r

σse
4|Mfi|4

[(Efii − ~ω)2 + (Γfi)2]2

× 4|Mfi|2(Efi − ~ω)−
[
|Mff −Mii|2

× Efi(Efi − ~ωfi)2 − (Γfi)
2(3(Efi − 2~ω)

E2
fi + (Γfi)2

]
.

(33)
Hence the total refractive index change is given by

∆n(ω)

nr
=

∆n(1)(ω)

nr
+

∆n(3)(ω)

nr
. (34)

3. Results and discussion

The ground state and low lying-excited state ener-
gies of a hydrogenic impurity located at the centre

of a strained ZnxCd1−xTe/ZnTe quantum dot, induced
by the spontaneous and piezoelectric polarizations have
been calculated with various Cd content with and with-
out the polaronic e�ect by taking into account the im-
purity potential using the Aldrich�Bajaj e�ective po-
tential with the dielectric con�nement. The e�ect of
z-con�nement has been calculated through a �nite quan-
tum dot model with con�nement potential determined
by the band o�sets and strain e�ects. Calculations have
been performed using the Bessel function as an orthonor-
mal basis for di�erent con�nement potentials of barrier
height. The atomic units have been followed in the
determination of electronic charges and wave functions
in which the electronic charge and the Planck constant
have been assumed as unity. All the other values of
Cd1−xZnxTe parameters are interpolated from the data
mentioned in Table.

TABLE

Material parameters∗ used in the calculations.

Parameter CdTe ZnTe
m∗

j 0.11 0.2
ε 9.6 9.81

a [nm] 0.6481 0.6466
C11 [GPa] 5.66 5.315
C12 [GPa] 3.96 1.87
EΓ

g [eV] 1.606 2.394
∗ Ref. [20].

Figure 1 shows the variation of binding energy as a
function of dot radius for various con�nement poten-
tials (x) in a strained Cd1−xZnxTe/ZnTe quantum dot
with the inclusion of polaronic e�ect and the inset shows
the variation of barrier height with the Zn concentra-
tion. The hydrogenic impurity binding energy has been
computed with VAB, the screened potential derived by
Aldrich and Bajaj [22] taking into account the polaronic
e�ects. The e�ect of attractive Coulomb potential of the
impurity on the total energy is brought out here. It is
observed that the binding energy increases with decreas-
ing dot radius and it reaches the maximum value for a
critical dot radius and then rapidly decreases in all the
cases. It is because the contribution of con�nement is
dominant for smaller dot radii making the electron un-
bound with the spread of the wave function through the
barrier [24]. The dotted points refer the results obtained
by Stojanovi£ and Kosti£ [24] who calculated the hydro-
genic impurity in CdTe/ZnTe spherical quantum dot an-
alytically. Our results are in good agreement with their
analytical results. The inset shows the variation of bar-
rier height as a function of Zn content in a Cd1−xZnxTe/
ZnTe quantum dot. It is found that the barrier height
increases as the Zn concentration is increased due to the
enhancement of the band gap with the concentration.
Hence, the binding energy increases with the concentra-
tion of Zn in CdZnTe quantum dot.
Figure 2 displays the variation of binding energy as a
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Fig. 2. Variation of binding energy as a function of dot
radius in a ZnxCd1−xTe/ZnTe quantum dot; curve (1)
represents the binding energy with the inclusion of
PB potential (Eq. (19)) and the dielectric mismatch,
curve (2) represents using PB potential and curve (3) is
obtained using bare screened Coulomb potential.

function of dot radius in a ZnxCd1−xTe/ZnTe quantum
dot. The curve (1) represents the binding energy with
the inclusion of PB potential using Eq. (19) and the di-
electric mismatch, the curve (2) represents using PB po-
tential and the curve (3) is obtained using bare screened
Coulomb potential. It is observed that the enhancement
of the binding energy due to electron�phonon interac-
tion is larger for all the dot radii but we notice that the
binding energy is more in�uenced for smaller dot radii
than the larger dot radii due to the con�nement. It is
important to notice that the polaronic e�ect is small for
heterostructures with weak ionic structure whereas it is
appreciable for all the polar heterostructures when the
e�ect of polaron is included [25]. The electron�phonon
interaction enhances the electron e�ective mass (polaron
mass) and diminishes the electrostatic screening. Both
the e�ects give rise to the enhancement of the binding
energy when the e�ect of the polaron is included. Further
we notice that the decrease of screening due to the less
value of dielectric constant in CdTe material increases
the binding energy. It is because the larger the polaron
mass increases the e�ective Rydberg energy ultimately
increases the binding energy.
Variation of absorption coe�cients of a hydrogenic im-

purity is shown in Fig. 3 in the strained ZnxCd1−xTe/
ZnTe quantum dot with the radius 40 Å and 80 Å, as a
function of photon energy and I = 10 MW/m2 for three
di�erent Zn concentration and the inset shows the vari-
ation of absorption coe�cients as a function of photon
energy with and without the polaronic e�ect for a con-
stant Zn concentration (x = 0.2). It is observed that the
magnitude of the linear absorption coe�cient shifts to-
wards lower energies (red shift) as the dot radius becomes
larger. It implies that size e�ect dominates in the low di-
mensional semiconductor systems. Hence there occurs a

Fig. 3. Variation of absorption coe�cients of a hydro-
genic impurity in the strained ZnxCd1−xTe/ZnTe quan-
tum dot with the radius 40 Å and 80 Å, as a function
of photon energy and I = 10 MW/m2 for three di�er-
ent Zn concentration; the inset shows the variation of
absorption coe�cients as a function of photon energy
with and without the polaronic e�ect for a constant Zn
concentration (x = 0.2).

blue shift when the dot radius is increased. Also, we no-
tice that the absorption coe�cients of smaller dot radii
are stronger than that of the larger dot radii. It is because
the increase of the Coulomb interaction energy leads to
the increase of the energy di�erence between the initial
and �nal states. Moreover, it is obvious that the size of
the quantum dot depends on the transition matrix ele-
ment, the electron density and ultimately on the absorp-
tion coe�cients. Moreover, we notice that the binding
energy is more for when the polaronic e�ect is included
for all the dot radii due to the enhancement of hydrogen
binding energy when the Hamiltonian is included with
the polaronic e�ect. Hence it is concluded that intensity
dependent nonlinear absorption coe�cients near the res-
onant frequencies are important and it should be taken
into account in studying the optical properties of hydro-
genic impurity in the low dimensional heterosystem.
However, the contribution from the nonlinear optical

absorption coe�cient should be considered provided the
optical intensity is very strong. The intensity of the total
absorption spectra increases for the transition between
higher levels due to the increase of electronic dipolar ma-
trix element. When we include the e�ect of phonon the
optical absorption peak increases remarkably due to the
increase of electronic dipolar matrix element with the
strong con�nement potential. The phonons in strong
ionic crystals involve the relative motion of positive and
negative ions occurring polarization and has a strong
interaction with electromagnetic waves. Thus the LO
phonon has a remarkable in�uence on the optical prop-
erties of polar crystals. Moreover, phonon has an impor-
tant e�ect to the electron transition between the inter-
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Fig. 4. Variation of changes of refractive index for a
hydrogenic impurity in the strained ZnxCd1−xTe/ZnTe
quantum dot with the radius 40 Å, as a function of
photon energy and I = 10MW/m2 for three di�erent Zn
concentration; the inset shows the changes of refractive
index as a function of photon energy with and without
the polaronic e�ect.

subband when the system is irradiated with the photon.
Hence, the total optical absorption magnitude increases
by a factor of 2�3 with the inclusion of the electron�
phonon interaction taken into account [26].

Figure 4 shows the variation of changes of refrac-
tive index for a hydrogenic impurity in the strained
ZnxCd1−xTe/ZnTe quantum dot with the radius 40 Å,
as a function of photon energy and I = 10 MW/m2 for
three di�erent Zn concentration and the inset shows the
changes of refractive index as a function of photon en-
ergy with and without the polaronic e�ect. This �gure
has been drawn with the combining e�ects of two compo-
nents of refractive index, namely, ∆n(1)(ω)

nr
and ∆n(3)(ω)

nr

as a function of incident energy with and without the po-
laronic e�ect with the constant incident optical intensity.
It is observed that as the Zn incorporation increases, the
total refractive index changes shift towards the higher
values and the magnitude of total refractive index in-
creases. This is because the increase in hydrogenic im-
purity binding energy occurs with the Zn-composition.
Further, it is noticed that the changes of refractive in-
dex moves with the higher energy when the polaronic
e�ect is included, this is because the enhancement of the
binding energy occurs due to the inclusion of polaronic
e�ect. Also, it is noticed from Eq. (32) and Eq. (33) that
the linear relative change in refractive index does not
depend on photon intensity but the third order relative
change in refractive index changes with photon intensity
and it varies quadratically with the matrix element of
the electric dipole moment of the transition. Thus, the
nonlinear term must be considered when calculating the
refractive index changes of low dimensional semiconduc-

tor systems in which the incident light propagates along
the z-axis [27]. Thus, the nonlinear term must be con-
sidered when calculating the refractive index changes in
low dimensional semiconductor systems.

4. Conclusion

The ground state binding energy of a hydrogenic donor
is investigated in a polar quantum dot nanostructure. We
have studied the optical properties of hydrogenic impu-
rity in a strained ZnxCd1−xTe/ZnTe quantum dot with
and without the inclusion phonon assuming a spherically
con�nement potential for various Zn concentration. Vari-
ation of donor binding energy as a function of dot ra-
dius for various Zn content has been performed using
single band e�ective mass approximation. Calculations
have been obtained using the Bessel function as an or-
thonormal basis for di�erent con�nement potentials of
barrier height considering the internal electric �eld in-
duced by the spontaneous and piezoelectric polarizations.
The magnitude of the absorption coe�cients and the re-
fractive index changes will increase for transitions be-
tween higher levels with the inclusion of phonon e�ect.
Our results are presented for various dot radii, Zn con-
tent and con�ning potentials. It is investigated that the
potential with the inclusion of phonon will make the hy-
drogenic binding energies more than the obtained results
using a Coulomb potential screened by a bare static di-
electric constant and the optical properties of hydrogenic
impurity in a quantum dot are strongly a�ected by the
con�ning potential, dot radii and the Zn composition.
We hope that our results would explore new �ndings in
experimental sides on electro-optical devices.
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