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In this work, we present a new result which concerns the derivation of the Green function relative to the
time-independent Schrédinger equation in two-dimensional space. The system considered in this work is a quantal
particle that moves in an axi-symmetric potential. At first, we have assumed that the potential V' (r) to be equal
to a constant V, inside a disk (radius a) and to be equal to zero outside the disk. We have used, to derive the
Green function, the continuity of the solution and of its first derivative, at r = a (at the edge). Secondly, we have
assumed that the potential V (r) is equal to zero inside the disk and is equal to Vp outside the disk (the inverted
potential). Here, also we have used the continuity of the solution and its derivative to obtain the associate Green

function showing the discrete spectra of the Hamiltonian.
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1. Introduction

The method of Green’s function is a very powerful tool
in solving problems of mathematical physics. In the gen-
eral case the Green function is a distribution that was
introduced by Green in electromagnetism, and later used
by Neuman in the theory of Newtonian potential and by
Helmholtz in acoustics. Feynman also used this function
in quantum field theory with a different name that is
the “propagator”. It has also been used in the numeri-
cal solution of boundary integral equations for potential
flows in fluid mechanics, remote sensing of periodic sur-
faces, periodic gratings, and infinite arrays of resonators
coupled to a waveguide, in many contexts of simulating
systems of charged particles, in molecular dynamics, for
the description of quasi-periodic arrays of point inter-
actions in quantum mechanics, and in various ab initio
first-principle multiple-scattering theories for the analy-
sis of diffraction of classical and quantum waves.

There are usually several Green functions associated
with the same equation. These different functions are
distinguished from each other by the boundary condi-
tions. Thus it is important, when computing the Green
function of the linear differential equation to specify with
the boundary conditions.

Before dealing with the description of our problem we
include some works that are closely related to our prob-
lem, namely the Helmholtz equation on a disk. In Ref. [1]
the author treats the problem of a thin circular Kirchhoff
Poisson-plate. The plate edge is assumed to be elastically
supported so that the boundary values are that the ra-
dial bending moment equals zero, whereas the strength
is proportional to the function of the deflection on the
boundary. The Green function is also studied by [2] in
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circular, annular and exterior circular domain. In Refs.
[3, 4] the Green function was studied for the elliptic do-
main. The quantum problem relative to the scattering in
two dimensions was also treated in [5].

In our work, we address the problem of Helmholtz on a
disk but with new boundary conditions. These boundary
conditions are useful in quantum mechanics to problems
of diffusion and also for bound states. In quantum me-
chanics, if the potential is constant in the disk and is
zero outside (or vice versa) the solution of the Helmholtz
equation (the Schrédinger equation in our case) and the
derivative of the solution are continuous on the boundary
(the edge) of the disc. Specify one else in our problem:
the Helmholtz equation takes two different forms depend-
ing on whether it is inside the disk or outside. This type
of problem matches in quantum mechanics to the study
of a particle is subject to a potential which is a positive
constant to the interior of the disk and is zero on the
outside.

In Sect. 2, we will expose the Schrodinger equation for
the quantum particle moving in a potential defined as
a positive constant inside the disk and zero outside the
disk. It turns out that this equation is that of Helmholtz.
We also define in this section the boundary conditions to
which the solution of the problem must satisfy.

In Sect. 3, we calculate the Green functions associated
with the problem. We have divided this section into two
subsections 3.1 and 3.2. In Sect. 3.1, we considered that
the quantum particle has an energy E > V; and then
we calculated the Green function using the continuity
of the solution and its first derivative on the frontier.
In Sect. 3.2, we considered that the particle has energy
0 < E <V and calculated the Green function using the
same boundary conditions as in Sect. 3.1.

In Sect. 4, we consider another problem on the disk
that is to take the zero potential inside the disk and equal
to Vo > 0 outside the disk. Again, we calculated the
Green function using the same boundary conditions for
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the two cases £ > Vp and 0 < F < V. In this case,
the spectra are given by a transcendental equation. If we
make Vj to infinity, we found the well-known result for
an infinite well. The spectrum is calculated by the zeros
of the Bessel function. Finally, we finish this work by a
conclusion in Sect. 5.

2. Two-dimensional quantum problem

Let us consider a quantum particle moving in an az-
imuthal symmetrical potential (independent of the az-
imutal angle 6) defined on a disk:

Vo if 0<r<a,
0) = - - 1
¢(r.9) {O if r>a. (1)

The dynamics of this particle is governed by the time-
-independent Schrédinger equation

H(r,0) ¥ (r,0) = E¥(r,0), (2)
which is written in the natural polar coordinates (r,0)
and where ﬁ(r, 0) is the Hamiltonian of the particle,
with a mass M, moving in this potential. Equation (2)
is merely an eigenvalue E and eigenfunctions equation
¥ (r,0). The explicit form of the Hamiltonian of the sys-
tem is

. K2
H=——"A
oM 7,0 + ¢(’I", 9)7 (3)
where
# 19 1 02
Ao=52t 5 T o @)

is the Laplacian in polar coordinates. Equation (2) writes
as
h2
(WAT,O + ¢(T7 6) - E> W(T’, 0) = 07 (5)
or, with respect of the definition of ¢(r,0):

%Ar,g + E) Uous(r,0) =0 if r>a,

%Ar,g —Vo—i—E) Uin(r,0) =0 if 0<r<a.

(6)

This system is subjected to the boundary conditions

defined as ¥(r,6) and %W(r, f) are to be continuous

at v = a for all values of the azimutal angle . The

separation variables method leads to transform the last
two equations as

2M 2
d ( dwout> + ( Er— ";f) ot (r) = 0

dr " dr h2
if r>a, (7)
d d 2M m?
E (’I‘dr Spm> + (77,2(E — Vo)’f‘ - ) Wm(’f') =0
if 0<r<a, (8)
with the boundary conditions
Pout(a) = ¥in(a). (9)
d d
ar Wout(r) . = ar U4 (7“) . (10)
andm=...—2,—-1.0,+1,42,...

The global Green function of the problem (6) aug-
mented by the boundary conditions (9), (10) is given by

G(r,7',E) =G(r,0,r",0", E)
%) +1

= Z Z G(l:r,r',E)exp(im(0 —0")),
=0 m=—1
where G(1 : r,v', E) = G(l : r,r') is the radial Green func-
tion that we shall calculate in the subsequent sections.

3. Construction of the Green function
3.1. The case £ >V,

3.1.1. The case 0 <r <71’ < a (inside the disk)
Following Eq. (8) the Green function is given by

Gin (L7 )y =G (L) (11)
A Ji(pr), 0<r<r,

B (r') i(pr) — a(r’)Ji(ur)],

where p? = 25(E — ;). To compute the coefficients

A(r"), B(r") and a(r"), we use the continuity of the Green
function at r = r":

GU (L) — GHt (L:r 1) =0« (12)
B(r) Y (ur') = [A(") + a(r’)B ()] Ji (u') = 0

and use the discontinuity of the first derivative with re-
spect to r at r =r':

r<r<a,

d ’ ;o d ’ / ’
EGM (l:r+,r) faGl’l (l:r_,r) = %
= B(r)Y/ () )
A el B ) = 2 (13)
Combining (12) and (13) we obtain
Apy =B () Vi (u;l)(;ri);(r )i ()] (14)
and
By ) - BB 003 o)
+a(r')B (r/)} J] (pr') = ﬂ_jr,. (15)

Using the Bessel Wronskian
W (Ji ('), Yi (') )
= Ji (ur") Y/ (pr') =Yy (ur") I} (ur') = Pyl (16)

we get the coefficients

B(r') = Jy (') (17)
and
A(r') = [Yi (pr') — o)y ()] - (18)

Then, the Green function inside the disk is given by
Yo (pr') = (") Jy (ur")] Ji (),
0<r <7,

[Yi(ur) — a(r’) Ji(pr)] Ji (ur')
r <r<a. (19)

G (1) =

It rests to determine the coefficient a(r’). To do this,
we use the symmetry properties of G(I : r,7’):
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Gl:r,ry=G(:7,r), (20)
Y7 (') — ') Jy ()] Ji(par)
= [Yi (ur’) — a(r)Jy ()] Ji(pr). (21)
By identifying in the last equation we find
a(r')y=a(r) = a. (22)

Then the Green function inside the disk is given by
G (L)

_ {m (r') = oy (")) Ji(pr), 0 <7 <o,

23
r<r<a. (23)

[Yi(ur) — adi(pr)] Ji (ur')
We mention here that the coefficient o will be deter-

mined later when we explore the region outside of the
disk.

3.1.2. The case a <1 <71’ < oo (outside the disk)

In the outside of the disk, the Green function can be
written as

G*%(L:r,r") (24)
B C (') [Yi(kr) = B(r")Ji(kr)], a<r <7,
| D (r") Jy(kr), ' <r<oo,

where k? = ZMLE. Using the continuity of the Green
function at r = r":

G (Lir! ) =G (L 7") =0
— —C (") Y, (k')
+[D ")+ BE)C ()] i (kr') =0 (25)
and the discontinuity of the first derivative with respect
tor at r =7r', we find

%G’Q’z (l : T;,r') — %G’QQ (l : TL,T’) = 2

= —C ()Y (k')
+[D (') + B(r")C (7] J] (kr') =

Following (25) we check that
C (") [Yi (k") = B0r")Ji (kr')]
Ji (kr')
and using the Bessel Wronskian
W (J; (kr"), Y, (kr'))
—2
= Ji (k) Yo (k') = Ju (k") Y/ (k') = ——2, (28)
we find after substituting (27) and (28) in (26):
-2 ! 2 !
Olr) 2007 L oty =—nk)  (29)

wkr! wkr!
and after substituting (29) and (27) in (24) we find

[Yi(kr) — B(r")Ji(kr)] Jy (k')

wkr! (26)

D(r') = (27)

22 n_ a<r<r,
(t:rr) [¥; (kr') = B7)J1 (kr")] Ju(kr),
r <r < oo. (30)

As we must have the symmetry property
G(l:rr")y=G(:7",r), (31)

we deduce

B(r') =p(r) =B (32)
and then
Yi(kr) = BJu(kr)] Jy (kr')
a<r<ry
G*?(l:r,r) = — - (33)

[Y: (k") = BJy (kr")] Jy(kr),
r <r < oo.
where § is a constant that we start to compute in the
following section.

3.1.8. The coefficients o and S

To find the coefficients o and 8 we use the continuity
of the Green function and the continuity of its derivative
at r = a:

GHY(1:ra) = G*2(1: 1,a) < [Vi(ua) — ady(ua)]

xJi(pa) = = [Yi(ka) — BJ;(ka)] J(ka), (34)
and
d 1,17 . _ i 2,27 .
N .G ra) e =GP (11 0) =0 (35)
1Y/ (na) — adi(pa)] Ji(pa)
= —k[Y/(ka) — BJ;(ka)] Ji(ka). (36)

After simplifications we get the coefficient «:

a= { — 2Jy(ka) + mwaJi(pa) [kYi(ua) Jj (ka) (37)

— pka)yy ()]} /
— phy(ka) J}(pa)] } =

radi(pa)[kJ(pa)Ji(ka)
—2Ji(ka) + maJ;(pa)V (k, 1)
raJi(pa)U(k, p)

such as
V(k, p) = kYi(pa)Ji(ka) — pJi(ka)Y/ (pa),
U(k, n) = kJi(na)J](ka) — pJi(ka)J| (na).
In the same way, we find
B ={—2J(pa) + maJ(ka) [1Yi(ka)J] (ua)
— kJi(na)Y/ (ka)] }
/{ﬂaJl(ka) (i (ka)J] (pa) — kJi(pa)J] (ka)] }
_ 2Ji(pa) + mad(ka)F(k, 1)
mwaJdy(ka)U(k, p)
where F(k, ) = pY;(ka)J](na) — kJi(pa)Y/ (ka). Finally,
the Green function inside the disk is given by
G (1)
Y (ur') Ji(pur)

—2Jy(ka)+maJ(pa)V (k,
o |: : l(‘/ra‘)]j_(ua);}étk,zj,) s Jl (/J/I"/) :| Jl(/,[,?"),

(38)

0<r <y,
Yi(pr)Jy (pr')

—2Ji(k waJ;(pa)V(k,
| PR ) 5 )| 1 ),

r <r<a,
(39)
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and outside the disk
G**(L:r,r") =
Yi(kr)J; (kr')
. |:2J;,(/»¢a)+7raJ,(ka)F(k,p,) Jl(lﬁ"):| Jl (k’f‘/),

maJy(ka)U (k,u)
a<r<r,
Y, (k') Jy(kr)

2Ji(pa)+mady(ka)F(k,p)
- [ BT A s Cammt (’W’)} Ji(kr),

' <r < oo.

(40)
3.1.4. The case 0 <1’ < a <r < oo (r' inside and r
outside the disk)
In this case the Green function writes as
G*Y(L:r,r") = [Yi(kr) — Ny (kr)] J; (ur') (41)

where )\ is a constant to be determined using the conti-
nuity of the Green function at r = a :

G*!(L:r,a)] N G**(L:r,a)] - (42)
Then
[¥i(ka) — AJy(ka)] Ji (o)
2Ji(na) + madi(ka)F(k, 1)
= — |Yi(ka) — k
i(ka) wad(ka)U(k, 1) Jika)
x Ji(ka) (43)
or
 Yilka) 4
Ji(ka)  ma|pdi(ka)J](pa) — kJi(pa)J (ka)]’
~ Yitka) 4 )
- Ji(ka)  waU(k,p)’
Then we obtain the Green function (mixed):
Yi(ka)
2,1 (] . N =y - l
610 = [t~ (05 + ot )
<1k () (46)
3.1.5. The case 0 <r < a<r' <oo (r inside
and r' outside the disk)
In this case the Green function writes as
GY2(L:r,r") = Jy(pr) [Yy (k') — nJy (kr')], (47)

where 7 is a constant to be determined using the conti-
nuity of the Green function at r = a:

G2, a)J r—a = GU(1 a)J —a (48)
Ji(p0) [Yi(ka) — .y (ka)] (19)
= [¥i(ua) - QJ’(’jTZ)JI;;{}((’;“K(’“’“) Ji(pia).
Then
_ Yi(ka) 4
= Ji(ka)  malkJi(pa)d](ka) — pJi(ka)J](pa))
_ Yitha) | 4
~ Ji(ka)  waU(k,p) (50)

Then the mixed Green functions become

639
e , Yi(ka) 4
GV (L:r,r) = {Yl (kr') — (Jz(ka) T waU(/f,,u))
< Ji (k) } (). (51

3.2. The case 0 < E < V)

In this case p becomes purely imaginary number
/

wo=ip:

W= iV2Z(E—Vy) = in. (52)
Then the Bessel functions transform as

Jy (u'r) = L(pr), (53)

Yi(W'r) = Ki(pr). (54)

Let us summarize all results in different regions now.
In the region defined inside the disk:

3.2.1. 0 <r <71’ <a (inside the disk)

G (L)
Ky (ur') I (ur) — —2Jy(ka)+mal;(pa)2(k,pm)

mali(pa) P (k,u)
x Iy (pr') Li(ur), 0<r <1/,

= — a T™a LQ (55)
Ki(ur) Ty (') — 2 e
x I(ur)I (pr’), ' <r<a,
where
Q(k, p) = kK (pa)Ji (ka) — ipJi(ka) K (pa),
B(k, p) = K (ua) J{(ka) — i (ka) ().
3.2.2. 0 <r' <a<r<oo (r inside
and r outside the disk)
Y (ka) 4
2,1 (] . N =y - l _
Gt = [t~ (5~ raate
X Jl(kr)] I (pr'). (56)

3.2.8. 0 <r<a<r <oo (r outside and r inside the
disk)

G2 (L:rr') = {Yz (kr') — (?]EE:Z; - ﬂa@?k’ﬂ)>

<15 | 1) 67)
3.2.4. a <r <71’ < oo (outside the disk)
G*2(L:r,r)
Yi(kr) i (k) — 2 s
x Jy(kr)Jy (kr'), a<r <7,
1(kr)Jy (kr') <r< (58)

21 (pa)+mad;(ka) ¥ (k,p)
waJ;(ka)P(k,p)

r' <r < oo,

Y, (kr') Ji(kr) —
X Jl (k?"l) Jl(kT),

where
U(k,p) = kI (na)Y/ (ka) — ipYi(ka)Ij (pa).
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4. Two-dimensional problem
for the inverted potential

Consider here the quantum particle moving in an az-
imuthal symmetrical potential (independent of the az-
imutal angle #) defined now as follows:

0 if 0<r<a
0) = - =7
(b(T?) {‘/0 if

To compute the Green function for this problem, it
suffices to reconsider the solutions obtained in the first
section and inter-change in them the constants p « k.
In this inversion E becomes less than Vy (F < V) and
becomes equal to /2m(Vy — E)/h. For example in the
case 0 < r <1’ < a where the potential ¢(r, 8) is zero and
equal to V; outside the disk, the Green function becomes

Ght(

r>a. (59)

cryr')
Y, (kr') Ji(kr)

—2Jy(ka)+maJ;(pa)V (k,u)
o |: : Tra.]l(ua)ll'](l;c,u) £ Ji (krl) :| Jl(k’/’),

0<r<r,
Y (kr)J; (kr')

—2Jy(ka)+madi(pa)V (k,p)
: TraJl(ua)TlJé;c ) k J[(k’?”):| Ji (k"l“/) )

P <r<a

and outside the disk (r >r' >a):
G*%(L:r,r")
Yipur)Ji (')
— [Pt ) 1 )|y ),
a<r<r,
) Ya(wr!) Jilpr)

- [ttt ) | o

r <r < oo.
(60)
The spectra are given by the poles of G*1(1: 7, 7). In
the case where r is inside and r’ is outside the disk

621 (1) = viur) - (3 - )

Ji(pa) — walU(k, p)
x Jl(m)] Jy (kr'). (61)

In the case where 7’ is inside and r is outside the disk

@2 ir) = i - (208 i)
% Ji (w“')} Ji(kr), (62)
we put
on = {21 (ua) + maJy(ka) [k (ua) Y] (ka)
— uYi(ka)J{ (pa)] }

/{ﬁaJl(ka) (kJi(pa)Ji(ka) — pJi(ka)J] (pa)] }

_ { 2Ji(pa) Ji(pa)

pJi-1(pa)

WaJl(ka)qu,l(/m) }/l—l(ka)

- itka)] < vika) (1 L)

a pJi—1(pa)
/{km [Jl_l(k;a) - klaJl(ka)}
~ Ji(ka) (1 - i%) } (63)

If we make the limit g going to + infinity that is to
say Vp goes to + infinity (infinity well), we obtain
Ji(pa)/[pJi-1(pa)] — 0, (64)
then
=Yi(ka)/Ji(ka), (65)
and the Green function, for the infinite two-dimensional
well, becomes

[Yl (k') — Ylke) J, (kr’)} Ji(kr),

Gy =4 OSTST
[Yilkr) = S (k)| i (k)
r' <r<a, (66)
G**(:rr")y=0, rr' >a, (67)
G* (l:r7)y=0, 0<7' <a<r, (68)
G (:r7)=0, O<r<a<r. (69)

This result is a well known quantum problem of a quan-
tum particle moving in the infinite two-dimensional well
presenting an azimuthal symmetry [2]. The spectra are
then given by the root of J;(ka) = 0.

5. Conclusion

In this work, we present a new result which concerns
the derivation of the Green function relative to the time-
-independent Schrodinger equation in two-dimensional
space. The system considered in this work is a quantal
particle that moves in an axi-symmetric potential. At
first, we have assumed that the potential V(r) is equal
to a constant Vj inside a disk (radius a) and is equal to
zero outside the disk. We have used to derive the Green
function, the continuity of the solution and of its first
derivative at » = a. Secondly, we have assumed that
the potential V(r) is equal to zero inside the disk and is
equal to Vj outside the disk. Here, also we have used the
continuity of the solution and its derivative to obtain the
associate Green function.
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