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We consider two interacting Bose�Einstein condensates with di�erent kinds of the potential energy of inter-
action of the condensates: (a) the standard potential, (b) the potential has a positive three-body and a negative
two-body scattering terms, and (c) the potential has a positive four-body and a negative three-body scattering
terms for the �rst Bose�Einstein condensate and a positive three-body and a negative two-body scattering terms
for the second Bose�Einstein condensate. It is shown that in these cases there exist stationary regular spherically
symmetric solutions. Physically such solution is either a defect or an energetic droplet created by the conden-
sates. The defect is a cavity �lled with one Bose�Einstein condensate on the background of another Bose�Einstein
condensate. The droplet is an object with zero energy density at the in�nity. For (a) and (b) cases the obtained
objects are supported by a constant external trapping potential and for (c) case the droplet is a self-maintaining
object without any external potential. The possibility of construction of an elementary logic qubit device on the
basis of this droplet is discussed.
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1. Introduction

Usually two interacting Bose�Einstein condensates
(BEC's) are described by equations where the potential
energy of interaction of the condensates has terms of 2th
and 4th orders [1]. But in Ref. [2] it was shown that
the Hamiltonian of two interacting BEC's may have the
interactions terms with both 6th and 4th orders. There
was shown that the term of 6th order can be positive and
the term of 4th order can be negative. Here we would like
to consider three di�erent cases of two interacting BEC's:
(a) both BEC's have 2th and 4th orders scattering terms
and interact with a constant external potential; (b) both
BEC's have positive three-body and negative two-body
scattering terms in the potential and interact with a con-
stant external potential; (c) one BEC is as in the pre-
vious item but another BEC has positive hypothesized
four-body and negative three-body scattering terms and
they do not interact with any external potential.
We will show that in such coupled equations set (de-

scribing two interacting BEC's) regular solutions appear.
From our point of view such solutions describe either de-
fect or a droplet (with zero energy density at the in�nity)
created by two interacting BEC's. We will show that: in
the case (a) we have a defect supported by a constant
external potential; in (b) we have a droplet trapped by a
constant external potential and in (c) we have a droplet
without any support of an external potential. The defect
means that we have a cavity on the background of the
space �lled with a �rst kind of BEC. The �rst kind of
BEC has a constant energy density at the in�nity. The
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cavity is �lled with another BEC whose energy density
asymptotically is zero. The droplet means that we have
an object �lled with two BEC's with both asymptotically
zero energy densities.

In Ref. [2] it is shown that if three-body term is re-
pulsive (the interactions terms of 6th order in our lan-
guage) and two-body term is attractive (the interactions
terms of 4th order in our language) then the conclusion
is made: �Since the two-body contribution to the ground
state energy of a dilute Bose gas is negative, the three-
-body collisions in the regime where g3 > 0 could lead to
the stabilization of the system. What is particularly in-
teresting for such a system is that a boson droplet a bose-
let could become selfbound and the trapping potential
is not required anymore to keep the particles together�.
Below we will show that such self-maintaining con�gura-
tion (droplet or boselet) does exist as the solution of Eqs.
(34), (35) if one BEC has a positive four-body and neg-
ative three-body scattering terms and another BEC has
a positive three-body and negative two-body scattering
terms.

At the present time the interaction between two in-
teracting BEC's is widely investigated. In Ref. [3] the
dynamics of two-component atomic Bose gases initially
in a mixture encountering a sudden quench of the inter-
-species interactions is investigated. The authors of
Ref. [4] consider the creation of stable, stationary closed
vortex loops in two cold atom BEC's. In Ref. [5] the
vortex structures of an elongated two-component Bose�
Einstein condensate is calculated. In Ref. [6] the cou-
pled Gross�Pitaevskii (GP) equations describing the dy-
namics of two hyper�ne states of the Bose�Einstein con-
densates are investigated and the integrability condition
for the propagation of bright vector solitons is deduced.
In Ref. [7] the authors investigate the combined soli-
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ton solutions of two-component Bose�Einstein conden-
sates with external potential. The results show that the
intraspecies (interspecies) interaction strengths and the
external trapped potential clearly a�ect the formation
of darkdark, brightbright, and darkbright soliton solu-
tions in di�erent regions. In Ref. [8] the localized non-
linear matter waves in the two-component Bose�Einstein
condensates with time- and space-modulated nonlinear-
ities analytically and numerically is investigated. The
dynamics of these matter waves, including the breathing
solitons, quasibreathing solitons, resonant solitons, and
moving solitons, is discussed. In Ref. [9] sound waves
in two-component Bose�Einstein condensates are inves-
tigated and there is proposed a new method of wave gen-
eration which is based on a fast change of the inter-species
interaction constant. In Ref. [10] stable skyrmions in two
component Bose�Einstein condensates are considered. In
Ref. [11] the authors report the numerical realization of
robust 2 � component structures in 2D and 3D BEC's
with non-trivial topological charge in one component.
The vortex � bright solitary waves are found to be very
robust in both in the homogeneous medium and in the
presence of parabolic and periodic external con�nement.
In Ref. [12] a family of exact vector�soliton solutions for
the coupled nonlinear Schrödinger equations with tun-
able interactions and harmonic potential is presented.
In this work we investigate the possibility of the ex-

istence of stationary solutions for two interacting BEC's
with and without any external trapping potential.
Our goal here is to show that equations describing two

interacting BEC's have 3-dimensional spherically sym-
metric stationary solutions. We will: (a) obtain solu-
tions with and without an external trapping potential;
(b) study BEC's with two, three and four-body scatter-
ing terms; (c) show that droplet solutions exist if corre-
sponding equations have scattering terms with di�erent
signs: one term should be attractive and another one re-
pulsive one. Physically it means that desired solutions
are an equilibrium between attractive and repulsive in-
teractions. Remarkable that such solutions cannot ex-
ist for one BEC following to the Derrick theorem [13].
This theorem states that a regular solution (with �nite
energy) for a nonlinear scalar �eld (where the potential
energy has only a global minimum) may exist in 1+1 di-
mension only (kink). In our case we have two interacting
BEC's and the potential energy has two global and two
local minima that ensures the existence of the required
solutions.

2. Defect solution with two-body scattering

terms and external trapping constant potential

In this section we consider a defect solution. The solu-
tion describes the defect �lled with one kind of BEC and
placed in the space �lled with another kind of BEC.
Considering a two-component BEC, the behavior of

the condensates that are prepared in two hyper�ne states
can be described at su�ciently low temperatures by the

two-coupled GP equation of the following form [2]:

i~
∂ψ̃1

∂t

=

(
− ~2

2m1
∇2 + U11

∣∣∣ψ̃1

∣∣∣2 + U12

∣∣∣ψ̃2

∣∣∣2 + V

)
ψ̃1, (1)

i~
∂ψ̃2

∂t

=

(
− ~2

2m2
∇2 + U22

∣∣∣ψ̃2

∣∣∣4 + U21

∣∣∣ψ̃1

∣∣∣2 + V

)
ψ̃2, (2)

where the condensate wave functions are normalized by
particle numbers Ni =

∫
|ψ̃i|2dV ; V is an external trap-

ping potential. The resulting equations for the wave func-
tions ψ1,2(r, t) in dimensionless form can be written as

i
∂ψ1

∂t
=
(
−∇2 + u11 |ψ1|2 + u12 |ψ2|2 + v

)
ψ1, (3)

i
∂ψ2

∂t
=
(
−k∇2 + u22 |ψ2|2 + u21 |ψ1|2 + v

)
ψ2. (4)

Here k = m1/m2 and we rede�ned t/t0 → t; r/l0 → r;

t0 = 2m1

~ψ2/3
1 (0)

; l0 = ψ
−1/3
1 (0); ψ1,2 =

ψ̃1,2

ψ1(0)
; uii =

2m1Uiiψ
4/3
1 (0)

~2 ; u12 =
2m1U12ψ

4/3
1 (0)

~2 and v = 2m1V

~2ψ
2/3
1 (0)

.

For the simplicity we will consider the case k = 1. We
are searching for a static spherical symmetric solution:
ψ1,2(r, t) = e−E1,2tψ1,2(r). In this case Eqs. (3), (4) are

ψ′′1 +
2

r
ψ′1 = ψ1

[
λ3ψ

2
2 + λ1

(
ψ2
1 − µ2

1

)]
, (5)

ψ′′2 +
2

r
ψ′2 = ψ2

[
λ3ψ

2
1 + λ2

(
ψ2
2 − µ2

2

)]
, (6)

where λi = uii, i = 1, 2; λiµ
2
i = Ei − v; λ3 = u12 = u21.

Equations (5), (6) are written in the form which is con-
venient for the numerical calculations. For the numerical
calculations we choose the boundary conditions and pa-
rameters values as follows:

λ1 = 0.1; λ2 = 1; λ3 = 1; (7)

ψ1(0) = 1; ψ′1(0) = 0; (8)

ψ2(0) =
√
0.6; ψ′2(0) = 0. (9)

The solution is searched as the nonlinear eigenvalue prob-
lem: µ1,2 are eigenvalues and corresponding functions
ψ1,2 are eigenfunctions. We solve equations set (5), (6)
numerically. The pro�les of functions ψ1,2 in Fig. 1 are
presented.

The asymptotic behavior of the functions ψ1,2 is the
following:

ψ1 ≈ µ1 − ψ1,∞
e−r
√

2λ1µ2
1

r
, (10)

ψ2 ≈ ψ2,∞
e−r
√
µ2
1−λ2µ2

2

r
, (11)

where ψ1,2,∞ are constants.

The dimensionless energy density has the form

ε(ψ1,2) =
1

2
|∇ψ1|2 +

1

2
|∇ψ2|2 + V (ψ1,2) , (12)
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Fig. 1. The pro�les of ψ1,2(x), µ1 = 1.61716, µ2 =
1.49276.

V (ψ1,2) =
λ1
4

(
|ψ1|2 − µ2

1

)2
− λ1

4
µ4
1

+
λ2
4

(
|ψ2|2 − µ2

2

)2
− λ2

4
µ4
2 +

λ3
2
|ψ1|2 |ψ2|2 . (13)

Let us note that the energy functional is de�ned with
accuracy of a constant. The constant is chosen as
−λ1

4 µ
4
1 − λ2

4 µ
4
2. The choice is made in such a way that

to have only scattering terms without any other ones in
Hamiltonian. In order to understand the physical sense
of the obtained solution let us introduce the energy den-
sities for both BEC's

ε1 =
1

2
|∇ψ1|2 +

λ1
4

(
|ψ1|2 − µ2

1

)2
− λ1

4
µ4
1, (14)

ε2 =
1

2
|∇ψ2|2 +

λ2
4

(
|ψ2|2 − µ2

2

)2
− λ2

4
µ4
2. (15)

Taking into account the asymptotic behavior (10), (11)
we see that the asymptotical behaviour of energy densi-
ties is

ε(ψ1,2)→ −
λ1
4
µ4
1, ε1 → −

λ1
4
µ4
1, ε2 → 0. (16)

It means that we have the space �lled with BEC de-
scribed by ψ1 and at the center there is a defect �lled
with BEC described by ψ2. In Fig. 2 the pro�les of the
energy densities for both BEC's with ψ1 and ψ2 are pre-
sented.
We see that choosing the di�erence Ei − v with some

special values

Ei −
2miV

~2ψ3/2(0)
= λiµ

2
i , (17)

we have the solution describing a defect �lled with one
kind of BEC on the background of the space �lled with
another kind of BEC. Equation (17) shows us that the
regular solution presented in Figs. 1, 2 exist only for some
special choice of E1 and external trapping potential V
since µi are eigenfunctions.
From Fig. 2 we see that the BEC described by ψ1 is

cancelled from the space to a core. Formally the picture
presented in Fig. 2 is similar to an Abrikosov vortex. The
Abrikosov vortex is a vortex of supercurrent in a type-
-II superconductor. The supercurrent circulates around
the normal (i.e. non-superconducting) core of the vor-
tex. The circulating supercurrents induce magnetic �elds

Fig. 2. The pro�les of the dimensionless energy densi-
ties: curve 1 � the dimensionless energy density (12);
curve 2 � the dimensionless energy density of the �rst
BEC described by ψ2, (14); curve 3 � the dimensionless
energy density of the second BEC described by ψ2, (15).

that are concentrated in a tube. Each vortex carries one
thread of magnetic �eld with a single �ux quantum Φ0.
The similarity between the Abrokosov vortex and our so-
lution for two BEC's is that the BEC described by ψ1 is
displaced from the space to a core since the energy den-
sity of this BEC tends to zero at the in�nity but the
energy density of both BEC's tends to non-zero value.
The pro�le for the dimensionless potential ε(ψ1,2) as

the function of functions ψ1,2 in Fig. 3 is presented. From
this �gure we see that it has two local and two global min-
ima that gives rise to the regular solutions of Eqs. (5), (6).

Fig. 3. The pro�le of dimensionless potential (12) as
the function of ψ1,2. One can see two local and two
global minima.

The numerical investigations show that the solutions
exist in a certain range of parameters λ1,2, ψ1(0). Our
investigation shows that the solution exist at least for
0.1 < λ1 < 0.5, 1 < λ2 < 2, 0.1 < ψ2(0) < 2.

3. Droplet solution with three and two-body

scattering terms and constant external

trapping potential

In this section we consider a droplet solution but BEC's
have positive three-body W11,22|ψ̃1,2|6 and negative two-

-body −U11|ψ̃1|4 scattering terms on the right hand side
(RHS) of Eqs. (18) and (19) [2].
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In this case a two-component BEC can be described
by the two-coupled equations (similar to GP) of the fol-
lowing form:

i~
∂ψ̃1

∂t
=

(
− ~2

2m1
∇2 +W11

∣∣∣ψ̃1

∣∣∣4 − U11

∣∣∣ψ̃1

∣∣∣2
+ U12

∣∣∣ψ̃2

∣∣∣2 + V

)
ψ̃1, (18)

i~
∂ψ̃2

∂t
=

(
− ~2

2m2
∇2 +W22

∣∣∣ψ̃2

∣∣∣4 − U22

∣∣∣ψ̃2

∣∣∣2
+ U21

∣∣∣ψ̃1

∣∣∣2 + V

)
ψ̃2, (19)

where the notations for Ni are the same as in Sect. 2.
The resulting equations for the wave functions ψ1,2(r, t)
in dimensionless form can be written as

i
∂ψ1

∂t
=
(
−∇2 + w11 |ψ1|4 − u11 |ψ1|2

+ u12 |ψ2|2 + v
)
ψ1, (20)

i
∂ψ2

∂t
=
(
− k∇2 + u22 |ψ2|4 − u22 |ψ2|2

+ u21 |ψ1|2 + v
)
ψ2. (21)

Here k = m1/m2 and we rede�ned t/t0 → t; r/l0 →
r; t0 = 2m1

~ψ2/3
1 (0)

; l0 = ψ
−1/3
1 (0); ψ1,2 =

ψ̃1,2

ψ1(0)
;

wii =
2m1Wiiψ

10/3
1 (0)

~2 ; uii =
2m1Viiψ

4/3
1 (0)

~2 ; u12,21 =
2m1U12,21ψ

4/3
1 (0)

~2 and v = 2m1V

~2ψ
2/3
1 (0)

. For the simplicity

we will consider the case k = 1. We are searching
for a static spherical symmetric solution: ψ1,2(r, t) =
e− iE1,2tψ1,2(r). In this case Eqs. (20), (21) are

ψ′′1 +
2

r
ψ′1 = ψ1

[
λ3ψ

2
2 + λ1

(
ψ2
1 − µ2

1

) (
3ψ2

1 − µ2
1

)]
,

(22)

ψ′′2 +
2

r
ψ′2 = ψ2

[
λ3ψ

2
1 + 3λ2ψ

2
2

(
ψ2
2 −

2

3
µ2
2

)]
, (23)

where 3λ1,2 = w11,22; λ3 = u12,21; u11 = λ1(µ
2
1 + 3);

λ1µ
4
1 = v − E1; 2λ2µ

2
2 = u22 and v − E2 = 0. Equa-

tions (22), (23) are written in the form which is conve-
nient for the numerical calculations. For the numerical
calculations we choose the boundary conditions and pa-
rameters values as (7)�(9).

Again we search the solution as the nonlinear eigen-
value problem: µ1,2 are eigenvalues and corresponding
functions ψ1,2 are eigenfunctions. The pro�les of func-
tions ψ1,2 in Fig. 4 are presented.

The asymptotic behavior of the functions ψ1,2 for such
two interacting BEC's is the following:

ψ1 ≈ µ1 − ψ1,∞
e−r
√

4λ1µ4
1

r
, (24)

ψ2 ≈ ψ2,∞
e−µ1r

r
, (25)

where ψ1,2,∞ are constants.

Fig. 4. The pro�les of ψ1,2(x), µ1 = 1.0576294, µ2 =
4.05682.

One can consider Eqs. (22), (23) as the Euler�
Lagrangian equations. Then the energy density has the
form

ε (ψ1,2) =
1

2
|∇ψ1|2 +

1

2
|∇ψ2|2 + V (ψ1,2), (26)

V (ψ1,2) =
λ1
2
|ψ1|2

(
|ψ1|2 −m2

1

)2
+
λ2
2
|ψ2|4

(
|ψ2|2 −m2

2

)
+

1

2
|ψ1|2 |ψ2|2 . (27)

The energy densities for both BEC's are

ε1 =
1

2
|∇ψ1|2 +

λ1
2
|ψ1|2

(
|ψ1|2 − µ2

1

)2
, (28)

ε2 =
1

2
|∇ψ2|2 +

λ2
2
|ψ2|4

(
|ψ2|2 − µ2

2

)
. (29)

Taking into account the asymptotic behavior (24), (25)
we see that at the in�nity

ε(ψ1,2)→ 0. (30)

It means that we have an energetic droplet �lled with
two interacting BEC's and trapped with the limitations

u11 = λ1(µ
2
1 + 3), v − E1 = λ1µ

4
1, u22 = 2λ2µ

2
2.

(31)

Equation (31) shows us that the regular solution pre-
sented in Figs. 1, 2 exists only for some special choice
of E1 and external trapping potential V since µi are

Fig. 5. The pro�les of the dimensionless energy den-
sities: the curve 1 � the dimensionless energy density
(26) for both BEC's; the curve 2 � the dimensionless
energy density (29) for the second BEC described by ψ2.
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Fig. 6. The pro�le of the dimensionless energy density
(28) for the �rst BEC described by ψ1.

eigenfunctions. The energetic droplet means that al-
though the number density |ψ1|1 6= 0 at the in�nity the
energy density ε→ 0.
In Figs. 5, 6 the pro�les of the energy densities for both

BEC's and for ψ1 BEC and for ψ2 BEC are presented.
The numerical investigations show that the solutions

exist in a certain range of parameters λ1,2, ψ1(0). Our
investigation shows that the solution exists at least for
0.1 < λ1 < 0.2, 1 < λ2 < 1.2, 0.6 < ψ2(0) < 0.8.

4. Energetic droplet solution with four and

three-body scattering terms and without

external trapping potential

In this section we would like to consider the interac-
tion between two BEC's where one BEC has a hypothe-
sized positive strong four-body scattering term. The �rst
BEC has four P11|ψ̃1|8 and three-body W11|ψ̃1|6 scat-
tering terms but the second BEC has three and two-
-body scattering terms (analogously to Sect. 3). In order
to obtain an energetic self-maintaining droplet without
any external trapping potential we assume that there ex-
ists BEC with positive four-body scattering and negative
three-body scattering.
In this case BEC's equations are

i~
∂ψ̃1

∂t
=

(
− ~2

2m1
∇2 + P11

∣∣∣ψ̃1

∣∣∣6 −W11

∣∣∣ψ̃1

∣∣∣4
+ U11

∣∣∣ψ̃1

∣∣∣2 + U12

∣∣∣ψ̃2

∣∣∣2)ψ̃1, (32)

i~
∂ψ̃2

∂t
=

(
− ~2

2m2
∇2 +W22

∣∣∣ψ̃2

∣∣∣4 − U22

∣∣∣ψ̃2

∣∣∣2
+ U21

∣∣∣ψ̃1

∣∣∣2)ψ̃2. (33)

The resulting equations for the wave functions ψ1,2(r, t)
in dimensionless form can be written as

i
∂ψ1

∂t
=
(
−∇2 + p11 |ψ1|6 − w11 |ψ1|4 + u11 |ψ1|2

+ u12 |ψ2|2
)
ψ1, (34)

i
∂ψ2

∂t
=
(
− k∇2 + w22 |ψ2|4 − u22 |ψ2|2

+ u21 |ψ1|2
)
ψ2. (35)

Here k = m1/m2 and we rede�ned t/t0 → t; r/l0 → r;

t0 = 2m1

~ψ2/3
1 (0)

; l0 = ψ
−1/3
1 (0); ψ1,2 =

ψ̃1,2

ψ1(0)
; p11 =

2m1ψ
16/3
1 (0)
~2 P11; wii =

2m1ψ
10/3
1 (0)
~2 Wii; uii =

2m1ψ
4/3
1 (0)

~2 Uii

and uij =
2m1ψ

4/3
1 (0)

~2 Uij . For the simplicity we will con-
sider the case k = 1. We are searching for a static spher-
ical symmetric solution: ψ1,2(r, t) = ψ1,2(r). In this case
Eqs. (34), (35) are

ψ′′1 +
2

r
ψ′1 = ψ1

[
λ3ψ

2
2 + λ1ψ

2
1

(
ψ2
1 − µ2

1

) (
2ψ2

1 − µ2
1

)]
,

(36)

ψ′′2 +
2

r
ψ′2 = ψ2

[
λ3ψ

2
1 + 3λ2ψ

2
2

(
ψ2
2 −

2

3
µ2
2

)]
, (37)

where 2λ1 = p11; 3λ1µ
2
i = w11; λ1µ

4
1 = u11; λ3 = u12 =

u21; 3λ2 = w22; and 2λ2µ
2
1 = u22. Equations (36), (37)

are written in the form which is convenient for the nu-
merical calculations. For the numerical calculations we
choose the boundary conditions and parameters values
as in (7)�(9).

The solution is searched as the nonlinear eigenvalue
problem: µ1,2 are eigenvalues and corresponding func-
tions ψ1,2 are eigenfunctions. We solve equations
set (36), (37) numerically. The pro�les of functions ψ1,2

practically coincide with the pro�les of the functions ψ1,2

from Sect. 3.

The asymptotic behavior of the functions ψ1,2 is fol-
lowing:

ψ1 ≈ µ1 − ψ1,∞
e−r
√

2λ1µ6
1

r
, (38)

ψ2 ≈ ψ2,∞
e−µ1r

r
, (39)

where ψ1,2,∞ are constants.

One can consider Eqs. (36), (37) as the Euler�
Lagrangian equations. Then the dimensionless energy
density has the form

ε(ψ1,2) =
1

2
|∇ψ1|2 +

1

2
|∇ψ2|2 + V (ψ1,2), (40)

V (ψ1,2) =
λ1
4
|ψ1|4

(
|ψ1|2 − µ2

1

)2
+
λ2
2
|ψ2|4

(
|ψ2|2 − µ2

2

)
+

1

2
|ψ1|2 |ψ2|2 . (41)

The energy densities for both BEC's are

ε1 =
1

2
|∇ψ1|2 +

λ1
4
|ψ1|4

(
|ψ1|2 − µ2

1

)2
, (42)

ε2 =
1

2
|∇ψ2|2 +

λ2
2
|ψ2|4

(
|ψ2|2 − µ2

2

)
. (43)

Taking into account the asymptotic behavior (38), (39)
we see that at the in�nity

ε(ψ1,2)→ 0, ε(ψ1)→ 0, ε(ψ2)→ 0. (44)

It means that again we have an energetic droplet �lled
with two interacting BEC's and trapped with the limita-
tions on parameters as follows:
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w11 = 3λ1µ
2
i , u11 = λ1µ

4
1, u22 = 2λ2µ

2
1. (45)

It allows us to emphasize that the solutions obtained here
exist for special kind of negative −W11|ψ1|6 three-body,
positive U11|ψ1|4 two-body and negative −U22|ψ2|4 two-
-body scattering terms.
The pro�les of the dimensionless energy densities (40),

(42), and (43) practically do not di�er from the corre-
sponding functions from Sect. 3.

5. Discussion and conclusions

From the mathematical point of view regular solutions
(having either a �nite energy or at least �nite values of
the �elds) for two interacting BEC's do exist only because
the corresponding potential either (13) or (27) or (41)
has local and global minima. If this potential has only
a global minimum then following Derrick's theorem [13]
such solution may exist in the dimension 1+1 only† and
this solution is known as a kink‡. It is interesting to
compare the properties of presented here solution with
the kink solution. The main di�erence is that the so-
lution obtained here is topologically trivial whereas the
kink is topological non-trivial solution. The topological
non-triviality means that there exists an integer (a topo-
logical charge) that does not change by a small deviation
of the solution. Usually the topological charge is char-
acterized by the solution behavior at the in�nity. Let us
emphasize once again that the solutions obtained here
are topologically trivial and they exist because the cor-
responding potential has both local and global minima
only.
From the physical point of view the existence of pre-

sented solutions strongly depends on the existence of de-
sired n-body interactions (n = 2, 3, 4):

• The defect solution presented in Sect. 2 exists if
the parameters E1,2 and an external potential V
are linked with the relations (17).

• For the existence of the solution presented in Sect. 3
it is necessary to have a positive three-body and
negative two-body scattering terms. In Ref. [2] ar-
guments in favour of the existence of such interac-
tion for one BEC are adduced. These arguments
are based on results of Ref. [15] where the ampli-
tude for the three-particle collisions is calculated.
There it is shown that the contribution of this in-
teraction to the energy density can dominate the
contribution arising from the two-body collisions.

†Under the condition of absence of other �elds: for instance,
the t'Hooft�Polyakov monopole solution [14] is regular one and has
only a global minimum but there exist additional �elds � SU(2)
Yang�Mills gauge �elds.
‡It should be reminded that Derrick in his paper speci�cally

states that his theorem is altered if there are multiple �elds or
higher derivatives involved.

Here we assume that such three-body interaction
exist for two interacting BEC's, too. Additionally
the parameters E1,2, U11,22 and the external po-
tential should be linked with the relations (31).

• For the solution presented in Sect. 4 a hypothesized
four-body interaction for the �rst BEC is assumed.
Three-body interaction should be negative for the
�rst BEC and positive one for the second BEC.
Additionally the parameters W11, U11,22 should be
tied with the expression (45).

• The droplet solutions from Sects. 3 and 4 are an
equilibrium state between attractive and repulsive
interaction terms and have zero energy density at
the in�nity.

Now we would like to discuss the physical interpre-
tation of the obtained solutions. The interpretation
strongly depends on the asymptotic value of the energy
densities. In the case of non-zero value we have the space
�lled with one Bose�Einstein condensate ψ1 and on the
background of this condensate there is a spherically sym-
metric defect (cavity) �lled with another Bose�Einstein
condensate ψ2. The asymptotic behavior of both con-
densates is di�erent: for ψ1 condensate the asymptotic
value is non-zero but for ψ2 condensate the asymptotic
value is zero. The same is valid for both energy den-
sities. If the asymptotic value is zero we have energetic
droplet solution: there exists a ball �lled with two BEC's.
There are two possibilities: either the energetic droplet
is trapped with a constant external potential (Sect. 3) or
not trapped without any external potential (Sect. 4). Let
us note that for the solution presented in Sect. 4 |ψ1|2 6= 0
at the in�nity but the energy density tends to zero. Such
situation can be called as energetic droplet.
Numerical calculations show that most likely the exis-

tence of a regular solution depends on the potential form
only: whether has it or not local and global minima si-
multaneously. In this connection one can mention that
similar solutions have been found for a scalar model of a
glueball [16]. In this model the Lagrangian from SU(3)
gauge theory by some manner can be approximated by
a Lagrangian with two scalar �elds. These two scalar
�elds approximately describe 2th and 4th Green func-
tions (i.e. the correlation between �elds in two or four
points in the spacetime) of SU(3) gauge �elds. The �rst
scalar �eld describes a gauge �eld belonging to subgroup
SU(2) ⊂ SU(3) and the second scalar �eld describes �elds
belonging to a coset SU(3)/SU(2). The kinetic terms
from the initial Lagrangian gives rise to kinetic terms
for both scalar �elds. The terms like ABµA

C
ν A

D
ρ A

E
σ give

rise to terms like (ψ2
i − ψ2

i;∞)2 in corresponding poten-

tials for the scalar �elds ψi (i = 1, 2). Here ABµ is the
SU(3) gauge potential. The di�erence between the po-
tential (26) and the potential obtained in Ref. [16] is that
the potential (26) is the polynomial of 6th order whereas
the potential from [16] is polynomial of 4th order. But in
both cases corresponding potentials have local and global
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minima that leads to the existence of a regular solution.
In Ref. [2] a similar construction is considered and follow-
ing conclusion is made: �. . . a dilute Fermi�Dirac droplet
will behave very much like a nuclear system�.
Finishing the comparison of obtained here solution

with the solution obtained for the scalar model of a glue-
ball we see that there is clear analogy between both solu-
tions. It allows us to draw interesting and useful analogy
between physical objects from high energy physics and
BEC's physics: (a) the defect solution is similar to a cav-
ity on the background of the space �lled with a nonzero
gluon condensate; (b) the droplet solution is similar to a
glueball.
Another important feature of the solution obtained

here is following. In Ref. [17] it was shown that under
certain conditions, the system of two BEC's has an al-
most degenerate ground state which is separated from
the excited levels by an energy gap. The atomic ensem-
ble then behaves like a two-level system that could be
used to encode a qubit. The authors have o�ered the
idea of using these two many-body states to encode a
qubit and use it for quantum computation. One can use
the defect/droplet obtained here as an elementary ele-
ment (quantum gate) for creating the qubit device o�ered
in Ref. [17].
Finally we would like to list the main features of the

solutions obtained here:

• The presented defect/droplet solutions exist for two
interacting BEC's only.

• The solutions exist for special choice of the BEC's
potential: it should have local and global minimum
only.

• The solutions are eigenfunctions for nonlinear dif-
ferential equations. Consequently some physical
parameters must have well de�ned values (external
potential, coe�cients in front of n-body scattering
terms and so on).

• The energetic droplet solution without any external
trapping potential exists in the case of very strong
interaction between atoms of BEC only. The en-
ergetic droplet solution presented here does exist
if there is a positive four-body scattering term of
atoms for one BEC.

• The defect solution exists for two interacting BEC's
but with some special choice of parameters Ei and
external trapping potential.
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