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The paper presents the results of simulation studies of selected neural network structures used for non-linear
function approximation based on a limited accuracy data. There was performed the analysis of the interdependence
of the network structure and the size of the set of learning patterns. The approximation inaccuracy was expressed
by the uncertainty interval width. The approximation properties of the neural method were compared with those
of the piece-wise linear and polynomial: “cubic” and “spline” methods.
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1. Introduction

The characteristic feature of artificial neural networks
is the ability of learning and generalizing the acquired
knowledge for new, previously unknown data [1, 2]. This
means that one of the main areas of their application are
various approximation tasks. For this purpose there are
generally used feed-forward multilayer perceptron (MLP)
[3] and radial basis function (RBF) [1] neural networks.
In many publications, e.g. [4-6], there is shown highly ef-
fective approximation of any function of many variables
with these types of neural networks, called by some au-
thors “universal approximators” [7, 8].

Thanks to its advantageous approximation properties,
neural networks are also widely used in the measurement
area [9-12]. They are often the last element of a pro-
cessing chain which reconstructs the measurement val-
ues [13, 14] by solving the inverse equation of the analog
processing phase. This requires knowledge of the inverse
model describing the analog processing chain, which in-
volves the need for its identification. For this purpose,
there is required a set of the input quantity measurement
results which are always obtained with a limited accu-
racy. In general, developing an enough accurate inverse
model of the analog processing chain is often difficult,
time-consuming and not always possible to carry out.
The main advantage of a neural network in the described
situation is that the neural learning process “creates” a
right inverse model by itself, that is it approximates the
inverse characteristics of the analog processing chain.

In a wider context, these issues can be considered
as approximation or interpolation of empirical functions
carried out on the basis of the measurement data of a
limited accuracy. In this case, comparison of the inaccu-
racy of the neural representation of a nonlinear function
with that of the classical (polynomial) approximation or
interpolation methods can be of essential practical im-
portance.
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2. Interdependence of the neural network
structure and the size of sets
of learning patterns

The use of neural networks for solving a specific task
requires, first of all, determination of the interdependence
between the network structure and the size of the set of
learning patterns. It is necessary to answer the ques-
tion what is the minimum size of the set of learning pat-
terns that allows sufficiently training the specified net-
work structure to have the required generalizing prop-
erties. The characteristic feature of neural networks is
“overlearning” phenomenon, occurring for too many pat-
terns of learning and resulting in generation of excessive
errors by the network. In publications there can be found
the dependence of the size of the set of learning pat-
terns on the Vapnik—Chervonenkis dimension (VCdim),
describing the network complexity [15]. However, there
is no simple relationship between a multilayer network
structure and the VCdim size. There can be only pro-
vided an estimate of the upper and lower range of the
VCdim [16] on the basis of the dependence

H
2int <2) N < VCdim < 2Ny (1 + log N,), (1)

where int(-) is an integer function, N is the number of
network inputs, H is the number of neurons in the hidden
layer, Ny, is the total number of connections in the net-
work (the number corresponds to the weighting factors),
N, is the total number of neurons in the network.

It can be noted that the lower limit of the VCdim is
approximately equal to the number of weights between
the input and hidden layer, and the upper limit is more
than twice of all the network weights. In practice, for the
networks with sigmoidal continuous transfer functions it
is assumed

VCdim 22 2Ny,. (2)

Estimating the VCdim value allows specifying the min-
imum size of training data set, but generally it is assumed
that good generalization ability of the network occurs in
the case when the size of the training set is 10 times
greater than the VCdim value. This means that the
greater the number of connections in the network (its
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complexity) is, the greater the size of the training data
set must be.

Another key issue is the proper selection of the network
structure for the type of the problem being solved. In a
general case, there can be used the Kolmogorov theorem
[17, 18] which proves the existence of solution to the prob-
lem of approximation of a function of several variables by
superpositions of many functions of one variable. Trans-
ferring this theory to the neural networks field means that
in the case of a continuous function which transforms the
N-dimensional input set to the M-dimensional output
set, approximation of this function is possible with use of
a feed-forward network with one hidden layer, containing
2N + 1 neurons.

The Kolmogorov theorem defines only the structure
of the network dedicated to solving approximation prob-
lems, but does not specify the type of the transfer func-
tion to be used, or the method of learning. In practice,
a simple application of the Kolmogorov theorem often
does not allow achieving the optimum solutions which
generally require the application of a larger number of
neurons in the hidden layer. Thus, the network struc-
ture resulting from the quoted theorem may be a starting
point for determining the optimal number of hidden layer
neurons by gradually adding them to obtain the assumed
accuracy of the approximation task.

3. Results of simulation researches

Simulation researches were carried out for the MLP
and RBF neural networks, using for this purpose the Neu-
ral Network Toolbox library, available in Matlab. It was
assumed that the task of the neural network was approx-
imation of a strongly nonlinear function

y = 0.0lhumps(z), (3)
where humps(z) is a function of the internal Matlab en-
vironment defined as:

1
(z —0.3)240.01
1
(x —0.9)24+0.04 0 (4)
The graph of the function described by relation (3) is
shown in Fig. 1.

This impulse function cannot be treated as a model of
the measuring transducer because it is not monotonic,
however, due to the relatively strong non-linearity, it is
a good object of research. It can be said that the im-
pulse function (3) is an extreme point of reference for the
real characteristics of transducers (it is more nonlinear
than they are), so the research results obtained for it are
general.

The network structure implementing the approxima-
tion of one variable function, resulting from the Kol-
mogorov theorem, contains one hidden layer with three
neurons (1-3-1 structure, the number of neurons in the
input, hidden, and output layer, respectively). For a
neural network with one input and output, it is nec-
essary to generate a learning set composed of input

humps(z) =
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Fig. 1. Graph of the function given by Eq. (3).
x = [x1,79,...,2n,]T and output y = [y1,v2,...,yn,]T

vectors, where NNV, is the number of learning patterns.
The elements of this set were determined on the ba-
sis of the functional relationship (3) which the network
has to learn. Estimation of the size of training set for
this network, based on the VCdim (2), gives the number
Nuyve = 10(2Ny) = 10 x 24 = 120 (excluding neurons
biases).

The values of the learning set elements were adequately
rounded to model the effect of quantization process in a
12-bit A/D converter. After the learning process (using
the Levenberg—Marquardt algorithm), the selected net-
works were tested by the not quantized, 10 000 element
testing set.

In the general case, to evaluate the training level of the
neural network, which includes both learning and testing
processes, there are used various “global” measures of er-
rors. The ones used most frequently for this purpose are:
mean absolute error [19], sum squared error [20], mean
square error [21] or root mean square error [22]. These
parameters are useful only to compare the quality of a
specific task realization by neural networks (of different
structures, learned by different algorithms). Full metro-
logical evaluation of a measuring chain in which neural
processing is used (neural network acts as a measuring
transducer) cannot be formulated on this basis. For this
purpose, it is necessary to determine the uncertainty, the
value of which is not directly related to these measures
of errors. The method for determining the uncertainty
width interval of the neural network output data on the
basis of the error histogram obtained in a testing process
is generally described in [23], in detail in [24].

The research results of the networks of selected struc-
tures trained by N,-element learning sets, the values of
which were quantized with 12 bit resolution are shown
in Fig. 2. The parameter Uy is the uncertainty width
interval (at the confidence level a = 0.95) of the out-
put results of the networks performing approximation of
function (3).

In the next stage of the study there was compared the
inaccuracy of neural representation of the nonlinear em-
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Fig. 2. The results of testing the MLP and RBF net-
works with different number of hidden neurons, approx-
imating impulse function (3), trained by N,-element
pattern sets, whose values were quantized with 12-bit
resolution. The number of RBF radial neurons is equal
to the number of the training set elements.

pirical function with that of the conventional interpola-
tion or approximation methods. These methods are used
in practice in order to obtain a numerical algorithm ex-
ecuted by a processor. From the measurements taken
there is obtained the data set, on basis of which there
is built an inverse, analytical model of the analog pro-
cessing chain. Comparison of the reconstruction results
obtained from the neural networks and numerical meth-
ods enables taking decision on selection of one of these
reconstruction methods.

The Matlab software allows using the appropriate func-
tions to perform interpolation by the piecewise-linear
(“linear”), third-order spline (“spline”) and piecewise cu-
bic method (“cubic”) using the Hermite polynomials [25].
These methods were used to interpolate the impulse func-
tion (3), and the node values were quantized with a res-
olution of 8, 12, and 16 bit.

The quantized values of the interpolation nodes were
used at the same time as elements of learning sets for the
MLP neural network with 12 hidden neurons (MLP12)
and RBF network with the number of radial neurons
equal to the number of learning patterns (due to the
specificity of learning the RBF network implemented in
Matlab).

Figure 3 presents the results of the comparative study
as the width interval of the uncertainty U expressing
the inaccuracy of neural representation of function (3).
The attempts to use polynomial approximation in the de-
scribed situation gave much worse results, despite a rel-
atively high-order of the approximating polynomial and
the large number of points used to identify the polyno-
mial coefficients.

4. Concluding remarks

The following remarks can be formulated based on the
performed studies. The results presented in Fig. 2 show
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function (3) representation by interpolating methods
and neural networks depending on the size of IV, train-
ing pattern sets and interpolation nodes whose val-
ues were quantized with the resolution of (a) 8 bits,
(b) 12 bits, (c) 16 bits.

that when using the data with limited accuracy for net-
work training, selection of the network structure due to
the Kolmogorov theorem (3 hidden neurons) and the size
of the training set estimated on the basis of the VCdim
(Ny = 120) do not ensure obtainment of the best approx-
imation results. In situations in which the learning data
are quantized e.g. with a resolution of 12 bit, the MLP
network with 12 hidden neurons performs the approx-
imate task most accurately for the number of learning
patterns not fewer than 50.

Furthermore, analyzing the results presented in Fig. 3,
it can be seen that the abovementioned network also per-
forms representation of function (3) more accurately than
the conventional nonlinear interpolation methods, among
which the spline interpolation showed the best conver-
gence. Moreover, it can be noted that these methods,
from a certain number of interpolation nodes IV, allowed
achieving approximately the same, impassable limit Usy,
expressing the interpolation inaccuracy.
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