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This paper presents the results of the research considering the in�uence of the initial frequency on linear
frequency modulation signal compression. The signal compression has been performed using the digital matched
�ltration in the time domain. The ratio of peak to side lobe ratio with the width of the main lobe equaling one
sampling period is the measure of the quality of compression. In general, a lower value of peak to side lobe ratio is
obtained for linear frequency modulation signals with a non-zero initial frequency than with a zero initial frequency.
The peak to side lobe ratio is systematically decreasing with the increase of the initial frequency f1. The existing
methods of band signals sampling, where the spectrum of the signals is transferred by means of the carrier signal
f0 of a signi�cantly higher frequency than the band B (f0 � B) may be e�ectively used for sampling signals
considered in this study, which do not have a carrier. As a result, for the linear frequency modulation signals with
a non-zero initial frequency f1 = nB and a �nal frequency f2 = (n + 1)B, n = 1, 2, . . ., the same peak to side
lobe ratio values will be obtained as for linear frequency modulation signals with a zero initial frequency and the
identical band and time duration. The results of this research could be implemented in sonar and radiolocation
techniques and medicine.
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1. Introduction

An important feature of broadband signals with a lin-
ear frequency modulation (LFM) is their autocorrelation
function. This function is characterized by the coe�-
cient of a high value determining the ratio of the level of
the main lobe to the maximal side lobe. The results of
the correlation analysis signi�cantly depend on the du-
ration of a signal and, among others, the in�uence on
the resolution of recognizing time shifts. During detec-
tions from the signal noises of a desired con�guration,
e.g. LFM signals, matched �ltering, which is a kind of
correlation analysis, is used. Applying matched �lter-
ing for these signals results we obtain their compression
[1�4]. The measure of the compression quality is a peak
to side lobe ratio (PSR) coe�cient de�ned as logarithm
of the quotient of the maximal value of the main lobe to
the maximal value of the side lobe expressed in dB.
Thus,

PSR = 20 log yc/yi, (1)

where yc is the central sample of the main lobe (the re-
sult of a central convolution operation), yi is the maximal
value of the convolution result appointed from other con-
volutions which form the side lobes.
A high PSR value makes it possible to detect and iden-

tify signals of this type, especially in the presence of sig-
ni�cant noises. The resolution of detection of such sig-
nals is related with the accuracy of de�ning the main lobe
position in time in an output signal of a matched �lter
(MF). Therefore the ratio of PSR with the width of the
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main lobe equaling one sampling period is the measure
of the quality of compression.

Usually, for chirp signal compression, �fast convolu-
tions� in the frequency domain on the basis of a fast
Fourier transform (FFT) and inverse FFT (IFFT) are
used [3]. However, such an approach requires about
N log2N operations for N samples of the chirp, the num-
ber of which limits the recognition speed, as well as the
use of this method in fast-acting location systems. On
the other hand, in this case the main lobe always consists
of a few samples, and not one that limits recognition res-
olution. This is connected with the fact that the FFT
output terms are multiplied by the frequency response
(FR) terms and, afterwards, squared, added up, square-
-rooted and, afterwards, are subjected to IFFT [3]. As a
result, close to the central sample, squared negative val-
ues always come together, and the main lobe consists of
a few samples which worsen the resolution.

Therefore, we consider the optimal way to compress
single short chirp signals with small bandwidth�time
product (BT) to be the use of digital matched �ltering
on the convolutions in the time domain, on the basis of
direct parallel algorithms. An N -channel parallel �lter
with one multiplier in each channel computes N convo-
lution results withinN periods Ts and this is log2N times
faster than the MF on �fast convolutions� if a sequential
algorithm of FFT is used. In that parallel structure the
non-linear operations on convolution results can easily be
ful�lled.

In the hypothetical case of an N -channel parallel FFT/
IFFT processor, which allows us to obtain a result near
to the direct parallel algorithm, it is also possible to real-
ize non-linear operations on the results of each channel.
Furthermore, the FFT result must be multiplied by a �l-
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ter FR, which corresponds to the impulse response (IR),
and, afterwards, subjected to IFFT. In this way we ob-
tain the result of matched �ltering by 2 log2N + 1 simul-
taneous multiplication operations in each channel, which
are realized only after N sampling periods Ts, which are
necessary to enter all samples of a signal to a processor
memory. Assuming that the duration of the multiplica-
tion plus addition operations does not exceed the sam-
pling period Ts (in this context � time or clock period),
the result of processing on the basis of the parallel FFT/
IFFT algorithm needs about N + 2 log2N + 1 clock pe-
riods which is longer by 2 log2N + 1 than the aforemen-
tioned direct parallel algorithm. Apart from that, each
channel of the FFT parallel processor contains log2N
multipliers plus a complementary one to multiply a FFT
result by the FR component. In contrast to this, the pro-
cessor on direct convolutions has only one multiplier at
each channel.

2. Matched �ltering algorithm
To implement the digital matched �lter, the input sig-

nal is represented in the form of a time series {xn} with
sampling rate fs = 1/Ts ≥ 2f2. The number of samples
is equal to N , where N is the integer part of τifs.
Each sample of the chirp-signal is given as follows:

xr = x (rTs) = A cos

(
2π

(
∆f

2N
r + f1

)
rTs + ϕ0

)
, (2)

where a = ∆f/2τi, ∆f = f2 − f1 is the deviation of
the frequency, f1 is the initial frequency, f2 is the �nal
frequency, τi is the duration of the chirp signal, ϕ0 is the
initial phase, r = 0, N − 1.
The algorithm of the digital matching �lter based on a

convolution in the time domain can be shown as follows:

yn =

N−1∑
m=0

xn−mhmwm. (3)

The IR of the matching �lter without a smoothing win-
dow is a mirror re�ection of the input signal (2):

hn = xN−n, where n = 1, N. (4)

Here, yn is the n-th convolution operation result; {xn}
are the input signal samples; {hn} are the weight factors
of the IR, N is the number of weight factors as well as
input signal samples, {wn} are the smoothing window
samples. In order to reduce the e�ect of Gibbs' oscil-
lations, the smoothing window {wn} is used [1, 3]. The
total number of convolutions is 2N−1. For a rectangular
window, wn = 1 is assigned. As a result of the chirp sig-
nal matched �ltering, both main lobe and side lobes are
formed. Thus, a few central samples (results of the con-
volution operations) create the main lobe, whilst other
samples form side lobes. According to algorithm (3), the
total number of multiplications needed to obtain in one
convolution is N . However, if MF consists of N parallel
channels containing multipliers, one convolution is car-
ried out in the time of one multiplication interval, which
does not exceed Ts.
In papers [5�7] it had been demonstrated that the ini-

tial phase and frequency, as well as the sampling rate

of both short LFM signals and matched �lter impulse
characteristics had been an important in�uence upon the
compression of these signals within the time domain. It
was demonstrated that they have an important impact
on the adjustment of the LFM signal amplitude spec-
trum to the selected window. The results of this study
show that the compression of chirp signals achieves the
best results when the above parameters are optimally set,
and in the �ltration process a rectangular window is used
with the simultaneous implementation of nonlinear oper-
ations on the convolutions. This selection is the basis of
minimization of the variance of the spectrum in the fre-
quency domain. This allows to obtain high compression
while achieving the borderline time resolution expressed
by the width of the main lobe � the main lobe has a
width equal to one sampling period only. The achieved
PSR is up to 20 dB better for the short LFM signals with
BT ≤ 100 (while maintaining a minimum width of the
main lobe) than when using classical analog and digital
methods.

3. Compression results of LFM signals

with non-zero initial frequency

Figure 1 shows sample �ltration results of LFM sig-
nals with the same BT obtained in computer simulations:
one with a zero and another one with non-zero initial
frequency. In both cases a rectangular window and non-
linear operations were used, and the initial phases of the
signals and their sampling rates were optimally matched.

Fig. 1. The results of matched �ltering with the use
of a rectangular window and nonlinear operations at
optimally matched sampling rate and an initial phase:
(a) the chirp parameters: f1 = 0, BT = 37.5; (b) the
chirp parameters: f1 = 0.1B, BT = 37.5.

While using chirp signals with a non-zero frequency
we always obtain a lower value of a PSR coe�cient
than while using signals with a zero initial frequency.
Table shows the results of chirp signals compression at
15 < BT < 300 with the use of a rectangular win-
dow, nonlinear operations and optimally matched initial
phases and sampling rate. Initial frequency is expressed
as its percentage value for the chirp signal band. The re-
sults have been obtained using the methods of computer
simulation.
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TABLEResults of chirp signals compression.

#
f1/B
[%]

PSR [dB]

BT = 15 BT = 30 BT = 37.5 BT = 60 BT = 90 BT = 105 BT = 300

1 0 45.28 51.17 50.87 52.98 54.99 55.75 60.57

2 1 46.68 48.08 48.53 51.64 49.58 52.16 52.47

3 2 45.83 48.09 46.94 47.25 47.50 47.37 46.79

4 3 42.66 43.82 42.76 44.57 43.98 43.98 42.15

5 4 44.73 42.84 41.94 41.43 41.56 41.35 39.34

6 5 42.68 40.45 40.92 40.17 39.32 38.83 37.73

7 6 41.29 38.78 38.99 38.05 36.54 36.18 36.76

8 7 38.62 38.27 36.45 35.37 34.28 34.15 36.15

9 8 38.18 36.97 35.29 33.96 3390 33.38 35.35

10 9 37.19 35.30 34.33 32.62 32.90 32.62 34.40

11 10 35.93 33.32 32.80 32.66 32.53 32.75 33.40

12 15 29.35 30.23 27.50 30.72 30.33 30.59 30.02

13 20 28.95 28.80 27.42 28.47 28.19 28.05 27.65

14 30 26.67 25.05 25.40 25.34 25.06 24.94 24.58

15 40 23.31 23.26 23.26 22.72 23.01 23.06 23.12

16 50 22.56 21.34 21.13 20.90 20.79 20.76 20.63

17 60 20.33 20.17 20.27 20.22 20.31 20.35 19.82

18 70 19.99 19.39 19.23 18.90 18.73 18.68 18.48

19 80 19.88 19.07 18.33 18.33 17.86 17.09 16.87

20 90 18.74 17.50 16.53 16.57 16.14 15.86 15.26

21 95 17.31 16.98 16.05 16.27 15.64 15.26 14.80

For every initial frequency an optimally matched ini-
tial phase of a chirp signal modi�ed, at which maximal
compression was obtained � an optimally matched ini-
tial phase generally increases with the increase of initial
frequency. An optimally matched sampling rate still re-
mains in the range of fN ≤ fsopt ≤ fN + 0.07fN (where
fN � the Nyquist frequency). With the increase of the
signal initial frequency, the impact of its initial phase
on compression decreases. At zero initial frequency the
initial phase shift of 1◦ for an optimally matched phase
results in an average decrease of PSR from 2 to 3 dB. For
the initial frequency higher or equal to 0.1B, the initial
phase shift of 1◦ for an optimally matched phase results
in an average change of PSR in the range of 0.03 dB
to 0.5 dB.

The variance of the amplitude spectrum continues to
grow with the increase of the initial frequency. Figure 2
shows the changes of PSR according to the initial fre-
quency for the signals with di�erent BT. The PSR coef-
�cients were determined at optimally matched sampling
rates and initial phases of signals, using the rectangular
window and nonlinear operations in the process of �ltra-
tion.

In general, while using chirp signals with a non-zero ini-
tial frequency a lower PSR is obtained, which systemati-
cally decreases with the increase of the initial frequency.
A chirp signals spectrum with a non-zero initial frequency
at an appropriately matched signal initial phase and an
optimally matched sampling rate increasingly deviates

Fig. 2. The changes of PSR according to the initial
frequency for the signals with di�erent BT.

from rectangular (the variance of the amplitude spectrum
increases) with the increase of the signal initial frequency.

Exceptions are chirp signals of 6 ≤ BT < 20, where at
initial frequencies lower than 0.01B a slight PSR increase
(up to 2.5 dB) is obtained. However, further increase
of initial frequency results in the decrease of PSR. For
chirp signals of BT ≥ 15 with initial frequency f1 ≥ 0.1B
the maximal obtainable PSR practically does not depend
on BT.

Existing sampling methods of band signals, whose
spectrum is transferred by means of the carrier signal f0
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with a frequency signi�cantly higher thanB (f0 � B) [2],
may be e�ectively used for sampling signals considered
in this study, which do not possess a carrier.
In this context, if a chirp signal has initial and �nal

frequency respectively

f1 = nB and f2 = (n+ 1)B, (5)

where n = 1, 2, . . . and a carrier signal frequency is re-
placed by central frequency fm = f1+f2

2 then analogously
to the paper [2] a relation will be obtained

2fm −B

k
≥ fs ≥

2fm +B

k + 1
, (6)

where k is any natural number providing fs ≥ 2B,
B = f2 − f1.
Consequently, for chirp signals with a non-zero initial

frequency according to Eq. (5), identical compressions
will be obtained, with identical fs as for chirp signals with
a zero initial frequency and the identical band and du-
ration. Such an approach is much simpler to implement
than the one resulting from the direct use of Nyquist's
frequency fs ≥ 2B. Moreover, it allows to receive maxi-
mal obtainable compressions.

4. Conclusion

The paper shows that for the LFM signals an initial
frequency di�erent from zero has a negative in�uence on

their compression � the PSR coe�cient systematically
decreases with the increase of the initial frequency. While
using existing methods of band signals sampling for the
LFM signals with a non-zero initial frequency, it is possi-
ble to obtain identical results as for the LFM signals with
a zero initial frequency and the identical band and dura-
tion. The initial frequency f1 and the �nal frequency f2
of an LFM signal must satisfy the condition: f1 = nB
and f2 = (n+ 1)B, n = 1, 2, . . .
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