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A New Conception of Measurement Uncertainty Calculation
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The paper presents a conception of uncertainty calculation of a result obtained in a direct measurement realized
in conditions described by random errors. The conception basis on the error de�nition being an e�ect of analysis
of a quantization process and, �rst of all, it permits to determine uncertainty of a single measurement result in
measuring and control systems processing signals varying in time. Division of the errors into two types A and B
permits elaboration of such a procedure which enables uncertainty calculation for an average value of a series of
measurements in the way close to this one proposed by GUM and widely discussed in last years. Theoretical
considerations are illustrated by examples showing practical properties of the presented uncertainty calculation
procedures.
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1. Introduction

The formula commonly used for uncertainty evaluation
of measurement results is based on the following equa-
tion:

u2(y) =

N∑
i=1

(
∂f

∂xi

)2

u2 (xi) (1)

taken from GUM [1] which is treated in metrology as a
container of fundamental rules dealing with inaccuracy
of measurement data. Equation (1) is called in it as �the
law of uncertainty propagation� and determines relations
between variations of quantities described in probabilistic
categories. Quantities xi, i = 1, 2, . . . , N , are measured
directly and then, on the base of its estimates, a value of
the quantity y is calculated with assumption that a re-
lation between these quantities is known as the function
which generally can be written as

y = f (x1, x2, . . . , xN ) . (2)

Variances u2(xi), i = 1, 2, . . . , N , in Eq. (1) are de�ned
as squares of suitable so-called �standard uncertainties�
which are in fact standard deviations (or their estimates)
of quantities measured directly. Variance u2(y) is treated
as a square of standard uncertainty u(y) of the quantity
y measured indirectly.
Equation (1) can be also used to determine standard

deviation (standard uncertainty) of a quantity measured
directly [1]. In this case, all di�erentials in (1) are equal
to 1, therefore, it may be written in the form:

u2 = u2
A + u2

B1 + u2
B2 + . . .+ u2

BJ , (3)

where the uncertainties have been divided into two cat-
egories. Uncertainty uA, named as type A, is calculated
statistically as a parameter of a series of measurement re-
sults. The uncertainties of type B: uB1, uB2, . . . , uBJ are
determined on the base of knowledge about measurement
conditions.
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The fundamental problem, dealing with the formulae
applied for uncertainty calculation obtained on the ba-
sis of (3), consists in lack of formal agreement between
its elements. One should notice that the considered un-
certainties have to be seen as standard deviations of the
same kind random quantities in�uenced on inaccuracy of
a direct measurement. Taking into account the fact that
type A uncertainty is calculated on the basis of a series of
measurement results, one cannot point any other series
which is obtained from the same measurement experi-
ment. Therefore, the uncertainty uA cannot be combined
with any other uncertainty.

One may point some more weakness of the uncertainty
calculation procedure based on GUM [1]. The most es-
sential one results from the fact that this procedure needs
a series of measurement results to determine uncertainty
of type A, thus, it cannot be used for uncertainty calcula-
tion of a single measurement result. In many situations,
especially happening in industrial measuring and control
systems [2�5], measured quantities are varying in time
and there are no possibilities to obtain more measure-
ment results than one.

Let us analyze (3) once more. The basic question is:
which assumptions should be taken in order to obtain for-
mal acceptance of this equation? It is obvious that vari-
ances (squares of standard deviations or standard uncer-
tainties) can be added if they are parameters describing
some uncorrelated random quantities. In the discussed
situation, these quantities have to be treated as �other
quantities weighted according to how the measurement
result varies with changes in these quantities� [1], which
means that they are agents in�uencing on accuracy of
the measurement result. From the mathematical point
of view, such agents are considered as random errors [6].
Therefore, one can say in conclusion that the variances,
added accordingly with (3), are parameters of suitable
random errors which describe in�uences of factors essen-
tial for inaccuracy of the result measured directly [7].

Taking into account above, the error equation in the
form

(436)
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e = eA + eB1 + eB2 + . . .+ eBJ (4)

can be treated as a formal basis of (3). According to (4),
the realization of the total (combined) random error e is
the sum of realizations of the uncorrelated random partial
errors denoted as eA, eB1, . . . , eBJ . In this case, the error
variances can be summed as it is described by (3).
One should notice that the partial errors in (4) have

the same indexes as the variances in (3) because division
of the errors into two categories A and B, appropriate to
the uncertainties A and B [1], is useful in some situations
occurring in practice. Let us take then that the error of
type A is such a kind of an error, probability distribution
of which is determined by using statistical means while
descriptions of the errors of type B are obtained in the
other ways �based on the degree of belief that an event
(i.e. realization of the error) will occur� [1].
Having given variation of the error, one can add it to

the variations of the other errors accordingly with (3) and
extract the square root which �nally results in obtaining
the standard deviation of the total error. As a rule, the
next operation consists in calculation of the expanded
uncertainty, which is performed as multiplication of the
standard deviation by the coverage factor [1]. This factor
depends on distribution of the total error which means
that (3) in its �clear� form may be used for the expanded
uncertainty evaluation only if the total error can be de-
scribed by the normal distribution, i.e. the central limit
theorem [8] is compulsory during combining the partial
errors. In other cases Eq. (3) is useless.
From these beginning considerations, one can draw the

conclusion that modern metrology needs a new look to
the problem of uncertainty calculation of a measurement
result. Main part of the paper is devoted to presentation
of the conception which permits to solve this problem for
measurements performed both in laboratories and in in-
dustrial measuring systems. The base of this conception
is a measurement error de�nition.

2. Measurement error in description

of a measured result

To obtain the measurement error de�nition, one can
analyse the case when a single measurement is realized.
This case is typical for measuring systems [4, 5], input
signals of which usually vary in time. Therefore, every
measurement has to be performed in two stages: at �rst,
the signal is sampled at the precisely determined moment
and, after that, the sample is measured by an analog-to-
-digital (AD) converter. AD conversion is realized only
one time, so one obtains only one measurement result for
every sample and there is no possibility to repeat this
action for the same instantaneous value of the signal.
From measurement point of view, AD conversion can

be described as a direct comparison of the measured
quantity with a sum of the same kind elementary mea-
surement standards called quanta [4, 5]. Every quantum
has the same value which is much less than a working
range of an AD converter. In voltage AD converters, the

quanta sum is usually obtained by using a voltage di-
vider built from resistors having the same values R or
connections R with 2R [5].

Generally, every measuring instrument working on the
described above rule is called a quantizer. Its scheme, in
the simplest form, is shown in Fig. 1a.

Fig. 1. (a) Basic scheme of a quantizer, (b) interpreta-
tion of a quantization result.

A quantization process can be performed in many dif-
ferent ways [5], but in every case the essence of this
process consists in comparison of a value of the quan-
tized quantity x with the sum of n quanta (every has
the value q) delivered from the quanta container. Let us
take that if x−nq > 0 state of comparator COMP s = 1,
in the other case s = 0. The control circuit increases
number of quanta as long as s = 0. Denoting the �nal
number of quanta as nq+1, where nq is the dimensionless
indication of the quantizer being the number of quanta
assigned to the value of measured quantity x, one can
describe the quatization result as an interval in the way
shown in Fig. 1b.

Accordingly with Fig. 1b, the quantization process con-
sists in assignment of the selected interval, determined in
real number set R, to the measured quantity x. Such
an assignment is caused by the quantum character of the
standard used in this process and let us to write that the
true value of the measured quantity ful�ls the inequality

nqq < x ≤ (nq + 1) q, (5)

which describes the relation between value of measured
quantity x and number nq obtained as a dimensionless
result of the quantization process.

For further considerations, one denotes

x̆ = nqq, (6)

where x̆ is the dimensioned indication expressed in units
of the measured quantity x (x̆ can be called also a raw
measurement result). After introducing expression (6)
to (5), one obtains

x̆ < x ≤ x̆+ q (7)

and then

0 < x− x̆ ≤ q. (8)

Such a kind of di�erence as in (8), i.e. between a value
of a measured quantity and a number obtained as a re-
sult of a measurement is commonly called a measurement
error. In the described situation, measurement is per-
formed by a quantizer and the error is de�ned as:
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ex̆ = x− x̆. (9)

Equation (9) describes how much the measured value x
di�ers from the suitable indication x̆ of a quantizer. Gen-
erally, this de�nition can be applied for every error of a
measurement result.
After introducing the de�nition (9) to inequality (8),

we have

0 < ex̆ ≤ q, (10)

which means that, in the considered situation, values of
the quantization error change in limits from 0 to q. In-
terval (10) is not symmetrical. In this case, values of the
error can be reduced (corrected) by subtracting its aver-
age value, equal to 0.5q (see Fig. 2), in the following way:

ex̂ = ex̆ − 0.5q. (11)

Coupling Eq. (11) and inequality (10) one obtains

0 < ex̆ + 0.5q ≤ q, (12)

which means that the corrected quantization error
changes in symmetrical interval

−0.5q < ex̂ ≤ 0.5q. (13)

The same result, as described by expression (13), can
be obtained by replacing the indication x̆ with its cor-
rected value [5]:

x̂ = x̆+ 0.5q. (14)

Accordingly with inequality (13), error ex̂ takes the least
possible values. Taking it into account, corrected indica-
tion x̂ can be treated as the best representation of the
true value obtained from the measurement process and
called an evaluation of a measured quantity.

Fig. 2. Distributions of the quantization error:
(a) with systematic component, (b) after correction of
the systematic component.

It should be noticed that the correction may be done at
the level of the dimensionless result nq. After adding 0.5
to nq in the expression (6), one obtains the same e�ect
as described by inequality (13) and Eq. (14).
Inequalities (10) and (13) determine only the limits of

the quantization error. If one assumes that every mea-
sured value is as probable as the other values from the
input range of the AD converter, the quantization error
can be described in probabilistic categories. In this case
the probability density functions of the error have the
rectangular shapes shown in Fig. 2a and b, for Eqs. (10)
and (13), respectively [5].
The distributions from Fig. 2a and b di�er only with

the expected values: the distribution from Fig. 2a has
this value equal to q/2 while this one from Fig. 2b has
the expected value equal to 0. This property lets us to
put the hypothesis that, from the uncertainty calculation
procedure point of view, the measurement errors can be

divided into two categories: systematic and random. Val-
ues of the systematic errors are known and may be elim-
inated by adding corrections to a measurement result,
as it has been done in (14), or to the error (11). Such
an elimination results in reducing the expected value of
the random error to 0. Therefore, the random errors
are described in probabilistic categories, usually by using
a probability density function (generally: by a distribu-
tion) with the zeroed expected value.
A source of a measurement error is generally charac-

terized by a set of possible values which can be taken by
this error in the determined measurement conditions. An
error value set can be described in two ways: in proba-
bilistic categories [6] or by a deterministic function [7].
A description of random properties of the error takes usu-
ally the form of a distribution which is a function of the
error value. A deterministic description is used when it is
possible to determine a quantity, which an error depends
on, and a function that describes this dependence. Such
a quantity is called an in�uence quantity.
There are two ways of using the deterministic function

describing properties of an error. The �rst one consists
in calculating the error value for the known value of the
in�uence quantity. After that it is possible to use the
calculated value as the correction in the way described
above. The second way is applied if there is not possibil-
ity to know the value of the in�uence quantity but there
are known limits of its changeability in measurement con-
ditions. In this case, one can assume that the in�uence
quantity changes uniformly within the given limits. It
permits to determine frequency of the error value occur-
rence which can be interpreted as a description of the
probability density function of the error [5].
The same error can be described in a deterministic

way or in probabilistic categories dependently on mea-
surement conditions. This property is illustrated by
Example 1.

Example 1. Let assume that temperature t varies from
t− = 10 ◦C to t+ = 30 ◦C and in�uences linearly on error e
as it is shown in Fig. 3a. Therefore, the in�uence function
can be written as

e(t) = at+ b,

where

a =
e (t+)− e (t−)

t+ − t−
=

3× 10−3 − 1× 10−3

30− 10

= 0.1× 10−3 1/K

and

b = e (t−)− a · t− = 1× 10−3 − 0.1× 10−3 × 10 = 0.
Having temperature t known, one can calculate e(t)

and use it as the correction. It is impossible if only limits
t− and t+ are known. In this case one can assume that all
values of the temperature are of the same probability in
interval [t−, t+], which permits to determine probability
density function g(e) of error e shown in Fig. 3b [5].
Distribution from Fig. 3b is rectangular within limits:

e(t−) = 1 × 10−3 and e(t+) = 3 × 10−3. In such a case,



A New Conception of Measurement Uncertainty Calculation 439

Fig. 3. (a) Deterministic description of exemplary er-
ror, (b) its probabilistic description with systematic
component, (c) probabilistic description of the error af-
ter correction of the systematic component.

the expected value of error e is equal to

E(e) = (3× 10−3 − 1× 10−3)/2 = 2× 10−3,

which means that one can decrease every value of the
error by subtracting correction

c = E(e) = 2× 10−3.

The same result can be obtained adding correction c to
the measurement result (see (14)).
After correction (see Fig. 3c), the error distribution

becomes symmetrical in relation to the vertical axis and
its changeability range is described by limits

lower : e− = e(t−)− c = 1× 10−3 − 2× 10−3

= −1× 10−3

and higher : e+ = e(t+)− c = 3× 10−3 − 2× 10−3

= 1× 10−3.

3. Uncertainty as a parameter of a measurement

error value set
From the presented above considerations, one can draw

the conclusion that inaccuracy expression of a measure-
ment result has to be based on mathematical descrip-
tion of error burdening this result. The error de�nition
introduced as (9) is not taken arbitrary but it has the
form resulting from analysis of the quantization process.
Taking into account that properties of this process can
be treated as representative for many measurement sit-
uations, the de�nition of a measurement error e can be
generally written in the form

e = x− x̂, (15)

where x̂ is an evaluation of a measurement result, the
value of which is the most closer to the true value of
a measured quantity. It means that performing a sin-
gle measurement one cannot obtain a better value of a
measured quantity than an evaluation. To the next con-
siderations, one assumes that the evaluation is obtained
by adding correction to the raw measuring result in this
way that, after correction, the measurement error has
expected value equal to 0. Therefore, an error source
burdening an evaluation is random and it is described
by probability density functions with zeroed expected
values.
Equation (15) is very important from uncertainty def-

inition point of view. In GUM [1] the term �uncertainty
of measurement� is generally interpreted as �doubt about
the exactness or accuracy of the result of a measurement�.
Using probabilistic categories, this descriptive de�nition

of the uncertainty can be written in the mathematical
form as the expression:

Pr [|x− x̂| ≤ U ] = p, (16)

where Pr means probability of such an event that abso-
lute value of the di�erence between unknown true value
of a measured quantity x and its evaluation x̂ is equal
or less than uncertainty U . Accordingly with (16), the
probability is equal to con�dence level p, the value of
which is typically taken as p = 0.95.
Having given error de�nition (15), one can introduce

it to expression (16) which after that takes the form

Pr [|e| ≤ U ] = p. (17)

If the error is described by symmetrical probability
density function g(e) with the expected value equal to 0,
one can write relation (17) as the functional∫ U

−U
g(e)de = p. (18)

Example 2. Let us calculate uncertainty caused by the
error described by probability density function shown in
Fig. 3c. This function can be written as

g(e) = a for e− ≤ e ≤ e+,

g(e) = 0 otherwise,
(19)

where the value of coe�cient a can be determined by
using the equation resulting from the fact that function
g(e) has to satisfy the normalizing condition∫ ∞

−∞
g(e)de = 1. (20)

Taking values e− and e+ from Example 1 and basing
on (19) and (20), one obtains a = 500.

Fig. 4. Graphical interpretation of uncertainty U cal-
culated in Example 2.

Having given the error distribution as (19), one can
determine value of the uncertainty from expression∫ U

−U
ade = 0.95. (21)

which has been obtained on the basis of (18). Taking
into account that a = 500, Eq. (21) is satis�ed for U =
0.95 × 10−3. Graphical interpretation of uncertainty U
is given by using Fig. 4. It shows that uncertainty is a
parameter of an error value set: it describes limits within
which the area under the probability density function
g(e) is equal to p = 0.95 (95% of the whole area under
this function).
4. Expression of a single measurement result

as an interval

The common approach to description of a measure-
ment result consists in writing it as a numerical interval,
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the limits of which are determined by an uncertainty [1].
Such a kind of description of measurement data is fre-
quently used in the case when di�erent mathematical
means are applied for presentation these data in metro-
logical categories [9�15].
Interpretation of the uncertainty given by Fig. 4 di-

rectly leads to the presentation of a single measurement
result as a numerical interval. From (16) it results that
probability of �nding the true value of the measured
quantity inside the interval described as

|x− x̂| ≤ U (22)

is equal to p. Transforming inequality (22), one obtains
expression:

x̂− U ≤ x ≤ x̂+ U (23)

describing limits of the interval which represents measur-
ing quantity x after its single measurement. The lower
limit of the interval is

x = x̂− U, (24)

while the upper one

x̄ = x̂+ U. (25)

Therefore, the middle of the interval has the form [15]:

mid(x) =
x̄+ x

2
=
x̂+ U + (x̂− U)

2
= x̂ (26)

and the radius

rad(x) =
x̄− x

2
=
x̂+ U − (x̂− U)

2
= U. (27)

The expressions presented above show that every sin-
gle measurement result should be determined as the in-
terval containing real numbers which means that mea-
sured quantity x is transformed to interval x in e�ect of
a measurement process. The interval is built around the
evaluation x̂ being its middle (26) while interval radius
is equal to uncertainty U . Therefore, the interval rep-
resenting a measurement result with probability p (it is
called 95% coverage interval [16] for p = 0.95) can be
written as

x = [x, x̄] = [x̂− U, x̂+ U ] . (28)

Processing measurement data by using algorithms [5]
needs description of the interval in form (28) as two ad-
ditive parts

x = x̂+ [−U,U ]. (29)

In form (29), the interval is composed of evaluation x̂
and symmetrical interval [−U,U ] (its radius is equal to 0)
which can be called an uncertainty interval. If the prob-
ability density function is non-symmetrical, the uncer-
tainty interval is not symmetrical, too. Mathematical
means that can be used in this case for determination of
a measurement result as the interval have been described
in [5].

5. Combined uncertainty

In practice, every measurement result is burdened by
many errors which means that the total uncertainty is a
combination of partial uncertainties describing in�uences
of the partial errors on inaccuracy of a measurement re-
sult. One can point four main ways of calculating the

combined uncertainty. The �rst one consists in determi-
nation of standard deviation (standard uncertainty) ac-
cordingly with (3) and multiplication it by the coverage
factor [16], value of which depends on both p and shape
of distribution of the combined error being sum (4) of the
partial errors.
In the second way, all calculations are performed on un-

certainty intervals determined for each partial error [17].
Possibility of taking into account correlations between
partial errors is important property of this method [18].
The third way can be realized if combined error ec is

described as the sum of N uncorrelated errors

ec =

N∑
i=1

xi. (30)

Knowing distributions of partial errors ei, i = 1, . . . ,
N , one can determine the probability density function
of the combined error making multi-step convolution ac-
cordingly with [4]:

gc (ec) = g1 (e1) ∗ g2 (e2) ∗ . . . ∗ gN (eN ) , (31)

where gi(ei) is probability density function of i-th er-
ror and ∗ is symbol of convolution. Hawing determined
gc(ec), one can use (18) to calculate the combined uncer-
tainty.
The last procedure, most useful in practice and recom-

mended by [16], is based on error model (30) and applied
probabilistic simulation called Monte Carlo method. Ex-
cept of making convolution (31), it applies (30) for sum-
ming up realizations of the partial errors, as it is shown in
Example 3. The procedure is performed in many steps
(in practice one uses about 100 000 steps). Every step
consists in summing values of partial errors taken from
populations described by known probability density func-
tions. The sum of realizations is located in the set con-
taining values of the combined error. At the end of this
procedure, the uncertainty is calculated on the base of
this set by using functional (18).

Fig. 5. Histogram of the combined error obtained in
Example 3. Uncertainty calculated from this histogram
for con�dence level p = 0.95 is U = 1.1× 10−3.

Example 3. Let assume that the combined error is
the sum of two uncorrelated partial errors, i.e.: ec =
e1 + e2. Error e1 is described by rectangular probability
density function shown in Fig. 3b while the distribution
of error e2 is normal with standard deviation σ = 0.33×
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10−3. The combined error calculated by using Monte
Carlo method is shown in Fig. 5. More details about
applications of this method to calculate uncertainties as
parameters of errors can be found in [5].

6. Errors of type A and B

To calculate uncertainty of a measurement results ac-
cordingly with the described procedure, it is necessary to
have given the probability density function of the total
error. It means that if the total error is sum (30), distri-
butions of all partial errors must be known. Therefore,
descriptions of the errors have to be determined a priori,
i.e. before a measurement realization. However, this re-
quirement not always has to be ful�lled. One can point
the situation when the error distribution may be deter-
mined after a measurement process � on the basis of a
series of measurement results. In this case, it is necessary
to divide partial errors into two categories: type A and
type B, according to (4).
Taking into account considerations presented above

and these ones from Sect. 1, one can qualify an error
as type B if its distribution is known a priori while the
distribution of type A error should be determined on the
basis of a measurement series. Acceptance of this de�-
nition imposes speci�c requirements on properties of the
errors of type A and B if one takes into account that both
types of the error are random. At �rst, it means that all
realizations of errors burdening measurement results in
a series should be described as arising from one source,
i.e. as the error of type A. At second, distribution of this
kind of error should be described as normal because in
practice only one parameter, i.e. a variance, is estimated
on the basis of a series of measurements, which is caused
by a limited number of results forming such a series.
One has to point an essential feature of errors if they

are divided into these two categories. In the conditions,
in which a measurement series is obtained, all errors of
type B take constant values because if not every change
of some B type error is quali�ed to the set of realizations
of A type error. Therefore, accordingly with (4), sum
of B type errors can be written as

eB1 + eB2 + . . .+ eBJ = c, (32)

where c is constant.
The described above feature is important because it

enables obtaining an estimate of the variation of the A
type error on the base of a series of measurement results.
Let us notice that after introducing (4) and (32) to de�-
nition of a measurement error (15) it takes the form

eA + c = x− x̂. (33)

In Eq. (33), measured quantity x has constant value be-
cause its invariability is the basic assumption taken for
realization of a measurement series. Value of c is also
constant, therefore, from (33) it results that realizations
of two random variables: error eA and evaluation x̂ di�er
in a constant value and have opposite signs. It means
that both variables have the same variances. Taking this
into account, one can calculate an estimate of the vari-
ance of error eA on the base of a series of measurement

results {x̂i, i = 1, . . . , n}, n is the total number of mea-
surements. The maximum likelihood estimator of the
variance is determined as [8]:

s̄2 =
1

n− 1

n∑
i=1

(x̂i − x̄)
2
, (34)

where x̄ is the average value of the series described by
expression

x̄ =
1

n

n∑
i=1

x̂i. (35)

The following example illustrates using a measure-
ment series to determination of A type error distribution.

Example 4. Measurement process has delivered the se-
ries of 10 results: x̂i = {1.0003, 0.9987, 1.0007, 1.0016,
0.9993, 1.0009, 1.0013, 0.9984, 0.9986, 1.0006}. On the
basis of these results the average value, calculated ac-
cordingly with (35), is equal to

x̄ =
1

10

10∑
i=1

x̂i =
10.0003

10
= 1.00003.

In this case, the variance estimator, described by (34),
has the value

s̄2 =
1

10− 1

10∑
i=1

(x̂i − x̄)
2

=
1.2742× 10−5

9

= 1.4157× 10−6.
Error of type A has the same variance as the series of

measurements. One assumes that all systematic errors
have been corrected, thus, the expected value of this error
is equal to 0. In this situation, taking into account that
the identi�cation procedure may be used only for random
errors with normal distribution, one can describe the dis-
tribution of A type error as normal N (0, σA), where σA

is standard deviation estimated as

σA =
√
s̄2 =

√
1.4157× 10−6 = 0.0012.

7. Uncertainty of an average value

of a measurement series
Having determined distributions of A type error and

errors of type B, one can calculate uncertainty of a sin-
gle measurement result in the described way. However,
in practice the same value of quantity is often measured
many times which enables reducing inaccuracy if ran-
dom error of type A dominates over the other errors (of
type B). In this case, it is necessary to perform a series of
measurements, on the basis of which average value (35)
is calculated. Its uncertainty can be obtained in the way
described in [5] with assumption that calculation of the
average value is a kind of processing algorithm realized
on a series of measurement results. This method is char-
acterized below.
A processing algorithm operates on measurement data

described by using a single measurement result model.
This model, built on the base of error de�nition (9), has
the form

x = x̂+ e (36)

obtained with assumptions that all systematic errors have
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been corrected. Equation (36) means that an unknown
true value of measured quantity x is the sum of its evalua-
tion x̂ (obtained after correction of a single measurement
result) and a realization of total (combined) error e. Gen-
erally, the combined error is given by sum (30) of partial
errors which are described in probabilistic categories and
uncorrelated as well as its probability density functions
have expected values equal to zero.

Let us use model (36) in situation when a result of
a measurement process is given as a series {x̂i, i =
1, . . . , n} composed on n evaluations of quantity x, which
has a constant value during the process performed in the
same measurement conditions. If every measurement re-
sult from this series is described by model (36), the av-
erage value (35) takes the form

1

n

n∑
i=1

xi =
1

n

n∑
i=1

(x̂i + ei) . (37)

Taking into account that during the measurement exper-
iment the true value of the measured quantity does not
change, i.e. xi = x = const, i = 1, . . . , n, expression (37)
can be written as

x =
1

n

n∑
i=1

(x̂i + ei) =
1

n

n∑
i=1

x̂i +
1

n

n∑
i=1

ei

= x̄+
1

n

n∑
i=1

ei, (38)

which means that if the evaluation of the measured quan-
tity is given as average x̄ (35), the total error of this av-
erage value is described by equation

ex̄ =
1

n

n∑
i=1

ei. (39)

The measurement results forming the series are ob-
tained in the same conditions which means that every
result is burdened by errors of the same kind. Taking
this into account and using description of errors type A
and B in the form (4), one can write (39) as

ex̄ =
1

n

n∑
i=1

[eA(i) + eB1(i) + eB2(i) + . . .+ eBJ(i)] .

(40)

As it has been discussed above, the series is measured
with assumption that errors of type B have constant val-
ues. Therefore, for every error of type B, it takes place

1

n

n∑
i=1

[eBj(i)] =
1

n

n∑
i=1

[eBj ] = eBj , j = 1, . . . , J. (41)

In this case, Eq. (40) takes the form

ex̄ =
1

n

n∑
i=1

[eA(i)] + eB1 + eB2 + . . .+ eBJ . (42)

Error of type A is described in Eq. (42) as the sum of n
errors which burden measured results being elements of
the series. Realizations of every partial error are taken
from the same population of the random error eA, thus
variation of this sum can be written as

σ2
Ax̄ =

n∑
i=1

[
σ2

A

n2

]
=
nσ2

A

n2
=
σ2

A

n
, (43)

where σ2
A is variation of A type error. Taking into ac-

count the fact that this variation may be estimated from
the measurement series by using (34), one can determine
estimate of the standard deviation of the A type error for
the average value (35) of the series on the base of equa-
tion

σAx̄ =

√
σ2

A

n
=

√
s̄2

n
=

√√√√ 1

n(n−1)

n∑
i=1

(x̂i − x̄)
2
. (44)

Equation (42) shows that errors of type B should be
introduced if there is a need to expand measurement con-
ditions in relation to these ones in which the series has
been obtained. Errors of type B describe all additional
factors, random properties of which appeared if in�uence
quantities change their values. In such a case, basing on
(42) and (44), one can calculate standard deviation of
the total error as

σx̄ =
√
σ2

Ax̄ + σ2
B1 + σ2

B2 + . . .+ σ2
BJ , (45)

where σB1, σB2, . . . , σBJ are standard deviations of
type B errors.
Equation (45) is usable for calculation of the expanded

uncertainty if one disposes information that the combined
error has the distribution close enough to the normal
one. In this case, the uncertainty is obtained by mul-
tiplying standard deviation (45) (standard uncertainty)
by the proper coverage factor suitable for taken value of
the con�dence level p [16]. Otherwise, one can use two
ways. The �rst way consist in determination of the to-
tal error distribution by using convolution (31) or Monte
Carlo method and then, using functional (18) to calcu-
late the uncertainty. Application of the second way needs
knowledge about values of expanded uncertainties of the
partial errors. Having it, one can calculate the composed
uncertainty using reductive interval arithmetic described
in [17, 18].

8. Basic procedures of uncertainty calculation

Taking the presented considerations into account, one
can point two basic procedures which can be used in prac-
tice to calculate uncertainty of a measurement result:

• Procedure 1 � applied if only a single measurement
has been performed.

• Procedure 2 � the �nal measurement result is cal-
culated as average value (35) on the basis of the
measurement series.

Procedure 1. This procedure is realized in the following
steps:

1. In the beginning, one should determine all partial
error sources and describe them by using symmet-
rical probability density functions with zeroed ex-
pected values. In the case when expected value of



A New Conception of Measurement Uncertainty Calculation 443

the partial error di�ers from zero, it is needed intro-
ducing the proper correction in the way described
in Sect. 2.

2. The presented procedure can be used only for un-
correlated errors (when they are correlated one can
use procedure described in [16]), therefore, the next
step consists in determination of the total error as
the set of values obtained as sum (30) of realiza-
tions of the partial errors. The probability density
function of the total error can be determined using
convolution (31) but the simpler way is to deter-
mine the histogram of the error occurrence by using
Monte Carlo method as it is shown in Example 3.

3. Having described the total error one can calculate
uncertainty of a single measurement result solving
functional (18) for taken con�dence level p. The
uncertainty value describes a priori inaccuracy of
every single measurement result obtained in the
conditions characterized by the selected errors.

4. The last step consists in writing the measured result
as interval (28), limits of which are determined by
the evaluation of the measured quantity and the
calculated uncertainty.

Example 5. Let us take that conditions, in which a
single measurement of voltage x is performed, are char-
acterized by two errors: e1 with normal distribution
N (0, 1 × 10−3) V and e2 with rectangular distribution
in limits [−0.001, 0.001] V. These errors have been de-
termined before realization of measurements, therefore
one calculate uncertainty a priori as the parameter de-
scribing inaccuracy of every single measurement. In this
case, the total error ec is the sum of two errors e1 and e2.
Using Monte Carlo method, one obtains the histogram
of the total error shown in Fig. 6.

Fig. 6. Histogram of the combined error obtained in
Example 5. Uncertainty calculated from this histogram
for con�dence level p = 0.95 is U = 1.8× 10−3.

On the base of this histogram, the uncertainty calcu-
lated accordingly with (18) for con�dence level p = 0.95
has value

U = 1.8× 10−3 V.

Let us assume now that a single measurement has been

performed and the obtained value of the evaluation is for
example: x̂ = 0.8577 V. The measurement result can be
written then as interval:

x = 0.8577 +
[
−1.8× 10−3, 1.8× 10−3

]
= [0.8559, 0.8595] V.

Procedure 1a. This procedure is performed in the
same steps as procedure 1 with this di�erence that the
error sources are divided into types A and B. Error of
type A is determined on the basis of the series obtained
from a measurement experiment performed especially
to this aim. The variance of this error is estimated by
using (34). Determination of distributions of the B type
errors is realized in the same way as for procedure 1, i.e.
by using knowledge about conditions of the measurement
process which are characterized by in�uence quantities.

Example 6. Let us assume that the error model of a
single measurement result of a voltage contains two er-
rors: eA of type A and eB of type B. Error of type A is
identi�ed on the basis of a series of measurements. Let us
take that realization of the identi�cation experiment has
delivered the series of results taken in Example 4. The es-
timate of the standard deviation, calculated in Example 4
on the basis of this series, has the value: σA = 0.0012 V.
Therefore, type A error is described by the normal distri-
bution N (0, 1.2×10−3) V. The error of type B describes
such a component of inaccuracy which results from the
fact that measurements are performed in temperature
that in�uences on measured results but its value is not
known. Taking that error of type B has properties de-
scribed in Example 2, its distribution is rectangular in
limits [−0.001, 0.001] V. The histogram of the total error
has been determined by using Monte Carlo method in
the same way as in Example 3. On the base of this his-
togram, the uncertainty calculated accordingly with (18)
for con�dence level p = 0.95 has value

U = 2.1× 10−3 V.

If one assumes that the evaluation value of a single mea-
surement is x̂ = 0.8577 V, it can be written as interval

x = 0.8577 + [−2.1× 10−3, 2.1× 10−3] V

= [0.8556, 0.8598] V.

Procedure 2. It is realized as follows:

1. Having obtained a series of measurement results, at
�rst one should calculate the average value of the
measured quantity accordingly with (35).

2. The next step consists in estimation of the standard
deviation of the type A error for the average value
of the series on the base of (44) with assumption
that it is of the normal distribution.

3. Distributions of the type B errors are determined
on the base of knowledge about conditions of the
measurement process.

4. In the next step, the probability density function
of the total error is determined using convolution
(31) or Monte Carlo method.
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5. Having described the total error, one performs un-
certainty calculation of the average value of the se-
ries by using (18).

6. The last step of the procedure consists in writing
the measured result as the interval (28), the bound-
aries of which are determined by the evaluation of
the measured quantity and the calculated uncer-
tainty.

Example 7. The series of measurement results, taken
in Example 4, has been obtained. The �nal result is de-
termined in this case as average (35) of the series. The
average is calculated in Example 4 and its value is

x̄ = 1.00003 V.

Error of type A can be identi�ed in this case on the basis
of the same series of measurements as the average value,
therefore, its standard deviation is estimated accordingly
with (44) and has value

σAx̄ =
0.0012√
10− 1

V = 0.33× 10−3 V.

The distribution of error of type A has to be assumed
as normal, thus it is described as N (0, 0.33 × 10−3) V.
Error of type B has the same properties as this one in
Example 6, i.e. its distribution is rectangular in limits
[−0.001, 0.001] V. The histogram of the total error, de-
termined by using Monte Carlo method, is the same as
shown in Fig. 5 (the errors in Example 3 have the same
distributions as in the presented example). On the basis
of this histogram, the uncertainty calculated accordingly
with (18) for con�dence level p = 0.95 has value

U = 1.1× 10−3 V.

Therefore, the �nal result being the average value of the
series can be written as interval

x = 1.00003 +
[
−1.1× 10−3, 1.1× 10−3

]
V

= [0.9989, 1.0011] V.

9. Conclusions
The presented conception of uncertainty calculation of

a result measured directly bases on the de�nition of the
measurement error. An uncertainty is determined as a
parameter describing a set of the error values treated as
realizations of a random quantity. Although the form of
the error de�nition is the e�ect of the quantization pro-
cess analysis, one can use this de�nition in every mea-
surement situation. The reason of such a point of view
results from the fact that in modern metrology one can
notice the tendency to build standards basing on quan-
tum phenomena. Moreover, every measurement instru-
ment is characterized by its resolution which causes that
number of possible measurement results is limited in the
way close to this one occuring in the quantization process.

Using the error de�nition as a starting point of this
conception enables obtaining the procedure of uncer-
tainty calculation which is relatively simple and formally
well grounded. The procedure is mainly dedicated to cal-
culate uncertainty of a single measurement result which
enables application of this procedure in measuring and
control systems to obtain instantaneous values of signals
varying in time. As it is shown in the paper, the proce-
dure may be used for determining uncertainty of the av-
erage value of a series of measurements and, in general,
for calculating uncertainty of algorithms [5] commonly
used for measurement data processing. Division of the
errors into separated types A and B permits to obtain
the uncertainty calculation procedure close to this one
proposed in GUM [1] and in its supplement [16].
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