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This article presents the issues connected with emitter sources identi�cation with low distinctive primary
features of a signal. It is a speci�c type of identi�cation called speci�c emitter identi�cation, which distinguishes
di�erent copies of the same type of emitter. The term of speci�c emitter identi�cation was presented on the basis
of fractal features received from the transformation of measurement data sets. The use of linear regression and
Lagrange polynomial interpolation resulted in the estimation of measurement function. The method analysing
properties of measurement function which was suggested by the authors caused the extraction of two additional
distinctive features. The features above extended the vector of basic radar signals' parameters. The extended
vector of radar signals' features made it possible to identify the copy of emitter source.
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1. Introduction

Signal identi�cation using classic techniques based on
the statistic of analysis of basic measurable signal pa-
rameters is not su�cient for the speci�c emitter iden-
ti�cation (SEI) problems [1, 2]. A signal with low dis-
tinctive primary features is a radar signal with a simple
(not complicated) and a stable structure (without mod-
ulation inside the impulse, on constant radio-frequency
(RF), constant pulse repetition interval (PRI) and pulse
width (PW)). Speci�c identi�cation method of the same
type radar copies is the extraction of distinctive features
which identify this copy [3].

The distinctive features above may be a result of the
received transformations of measurement data sets. New
data sets will have fractal features which will make it pos-
sible to de�ne clearly the source of emission. The fractal
features above and the theory of fractals is adopted by
researchers especially in the �eld of synthetic aperture
radar (SAR) image transformation [4, 5], acoustic signal
transformation and the analysis of radar signals. As the
authors of this article claim, the identi�cation of emit-
ter sources based on classical methods of the analysis of
basic parameters is currently ine�cient. The methods of
SEI [1, 6] should be used in order to identify a radar copy
of the same type more precisely.

The process of identi�cation was done on the basis of
the fractal which appeared from the transformation of
the so-called measurement points for which the record-
ing of primary features of a radar signal was prepared.
Measurement points correspond to further frequency val-
ues of which the recording of a signal was done. Given
sets of measurement points underwent transformation in
the two-dimensional Euclidean plane. As a result of the
transformation above the transformation attractor was
received. This attractor might be particularly a fractal.
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A set of a�ne transformations is in this case iterated
function system (IFS), and the fractal of generalized mea-
surement function is the attractor of the described radar
SEI procedure. The number of measurement points was
chosen experimentally and is the double value of maxi-
mum width of the indirect frequency �lter of the super-
heterodyne receiver i.e. 40 MHz. From this assumption
appears the fact that the border primary number of mea-
surement points is not bigger than 80. As a result of the
research, particular collections of values of measurement
points were con�rmed and were the condition which was
su�cient to extract additional distinctive features of the
radar emission sources.

2. Transformation fractal of characteristic points

Given set of measurement points was assigned in the
form of right-hand measurement vectors pr and left-hand
ones pl with the beginning in a chosen reference point,
so that pr = [pr1, p

r
2, . . . , p

r
N ]T and pl = [pl1, p

l
2, . . . , p

l
M ]T.

In order to de�ne the desirable selective features the
T : pr → t transformation was done. In this transfor-
mation t is the image of the pr vector in the form of a
vector with coordinates corresponding to the pl vector.
For the transparent record of the transformation above
with the use of vectors: pr and pl, the above mapping was
written in the Euclidean plane, that is T : E1 → E2. In
the issue, which is considered here, these transformations
are linear mappings, so they can be written in the matrix
form as t = T (pp,A), in which A is the matrix of a given
transformation. Depending on the received symmetry or
asymmetry (right/left-hand) of measurement points they
will create dispersion graphs given by [6]. Measurement
points presented in Fig. 1, transformed and depicted to-
gether, form the so-called measurement function K(fn).
Figure 1 shows the coordinate plane, where an abscissa
(the value of x) is marked as an fxn and an ordinate (the
value of y) is marked as an fyn .
On the basis of distinctive streaks which were formed,

such hypothesis can be proposed: functions gA(fn),
gB(fn), gC(fn), and gD(fn) belong to the class of lin-
ear functions, in which gA(fn), gB(fn), gC(fn), and
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Fig. 1. A graph of measurement points dispersion after
transformation in two-dimensional Euclidean plane E2

in combined depicting.

gD(fn) will be the regression lines of the second type
for the streaks formed through the measurement points
[7, 8]. Linear equation of regression for the presented
case is de�ned with the following equation: g(fn) =
αfn + β, in which α can be expressed as a vector
[αA, αB , αC , αD]

T and β can be expressed as a vector
[βA, βB , βC , βD]

T and g(fn) can be expressed as a vector
[gA(fn), gB(fn), gC(fn), gD(fn)]

T. To de�ne the value of
α and β the following equation should be minimized:

E
[
fYn −αfn − β

]2
= min, (1)

∂
∂αE

[
fYn −αfn − β

]2
= −2E

[(
fYn −αfn − β

)
fn
]
,

∂
∂βE

[
fYn −αfn − β

]2
= −2E

[(
fYn −αfn − β

)]
,

(2)

in which E means expected value. After comparing the
calculated derivatives of Eq. (2) to zero, there appears
the system of normal equations in which after replacing
the expected values with particular moments of equation
systems the following relations can be written:{

αm20 + βm10 = m11,

αm10 + β = m01,
(3)

in which m10 and m01 are sample 1th moments, m20 is
sample 2nd moment and m11 is mixed sample 1th mo-
ment. After further transformations the regression equa-
tion is as follows:

g(fn) =
µ11

µ20
fn +

(
m01 −

µ11

µ20
m10

)
= α21fn + β, (4)

in which

α21=

[
µA11
µA20

,
µB11
µB20

,
µC11
µC20

,
µD11
µD20

]T
= [αA, αB , αC , αD]

T
, (5)
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[
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01 −
µA11
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mA
10, m

B
01 −

µB11
µB20

mB
10,

mC
01 −

µC11
µC20

mC
10, m

D
01 −

µD11
µD20

mD
10

]T
= [βA, βB , βC , βD]

T
(6)

and µ11 means mixed 2nd central moment and µ20 means
2nd central moment. As a result of further transforma-
tions four linear regression equations were given. The
particular equation system given by the regression equa-
tion allows to calculate characteristic points of coordi-
nates. Examples of four characteristic points were pre-
sented in Fig. 1 in the form of black points next to
which coordinates such as (fSA, fSB) or (fNSB , fSB)
were formed. Then, with the use of characteristic points
of coordinates the K(fn) measurement function was
formed according to the following Eq. (7):

K(fn) =


fn for 0 ≤ fn ≤ fSA,
fSB for fSA ≤ fn ≤ fNSB ,

fn +A∗ for fNSB ≤ fn ≤ fSC ,
C ∈ (fSD, fNSD) for fn = fSC , (7)

in which A∗ = fSB − fNSB .
According to the form of K(fn) and according

to Eq. (7), it is possible to extract two additional dis-
tinctive features i.e. the length of measurement function
and the value of area which is included under this func-
tion. Given in that way two additional features expand
the vector of the basic features of radar signal measurable
parameters, such as PW, PRI and RF are a good separa-
tion measure in the process of exact identi�cation as far
as the copy of a radar is concerned. The way of de�n-
ing these two additional features and using them in the
process of identi�cation of the radar copies of the same
type, was presented in the further part of this article.

3. Fractal of generalized measurement function
Generalization of the method of radar emission sources

identi�cation on the basis of the transformation fractal
is de�ning the generalized measurement function K̂(fn)
going through all particular characteristic points Pn, in
which n = 0, 1, . . . , kgr. Figure 2 presents the fractal
character of the measurement function received as a re-
sult of the transformation of the set of measurement
points.
The generalized measurement function K̂(fn) pre-

serves the character of not decreasing function in a par-

Fig. 2. The fractal character of generalized measure-
ment function going through particular characteristic
points.
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ticular bracket 〈fmin
n , fmax

n 〉 and out of de�nite character

it shows prediction features. Simultaneously K̂(fn) is
located in an area that is mapped by the lower limiting
straight FL(fn) and upper limiting straight FU(fn) and is
symmetric relatively to the symmetrical limiting straight
FS(fn) according to Eqs. (8�10), in which fx2 , f

x
3 , f

x
gr are

the abscissae of characteristic points and fy2 , f
y
3 , f

y
gr are

the ordinates of characteristic points. Taking into what
is above, Fig. 2 presents a fractal character of the gen-
eralized measurement function which has the form of a
contraction mapping [9]:

FL(fn) =
fygr − f

y
2

fxgr − fx2
(fn − fx2 ) + fy2 , (8)

FU(fn) =
fygr − f

y
3

fxgr − fx3
(fn − fx3 ) + fy3 , (9)

FS(fn) =
fygr
fxgr

fn. (10)

On the basis of the received depiction, according to
Fig. 2, in order to receive universality a generalized form
of measurement function was presented. To make it more
general, the measurement function K(fn) in the form of
a product degree k, given k + 1 characteristic points,
de�ned by the interpolation Lagrange formula was for-
mulated in accordance with the following form:

K̂(fn) = akf
k
n + ak−1f

k−1
n + ak−2f

k−2
n . . .+ a0, (11)

in which ak, ak−1, . . . , a0 are characteristic parameters of

a generalized measurement function K̂(fn) given by [10].
The formalized notation of the measurement function
K̂(fn) allows to extract distinctive features through
de�ning the space area under the measurement function
and the arc length of the function, which appeared for
the SEI process. The feature Ŝ is the value of the space
area of a closed surface expanding from the generalized
measurement function K̂(fn) in the bracket 〈fmin

n , fmax
n 〉

respecting Eq. (12):

Ŝ =

∫ fmax
n

fmin
n

K̂(fn)dfn =

∫ fmax
n

fmin
n

(
akf

k
n + ak−1f

k−1
n

+ ak−2f
k−2
n + . . .+ a0

)
dfn. (12)

Simultaneously, the arc length of the generalized mea-
surement function K̂(fn) as the second distinction fea-
ture of the radar emission source will be represented
through the arc length L̂ of the function K̂(fn) in the
brackets 〈fmin

n , fmax
n 〉 respecting the following form:

L̂ =

∫ fmax
n

fmin
n

dfn

√
1 + (∂K̂(fn)/∂fn)2 =

∫ fmax
n

fmin
n

dfn

×
√

1 +
(
kakf

k−1
n + (k − 1)ak−1fk−2 + . . .+ a1

)2
.

(13)

It should be mentioned that the received shape of the
measurement function (according to Fig. 1 and Fig. 2) is
an individual model of a radar emission source. �An in-
dividual model� means �lines on the �ngers� of the radar
which make a clear identi�cation possible.

4. Identi�cation procedure, analysis results

The results of received measurements' analysis were
prepared according to the following schema. At the be-
ginning three copies of the same type of radar were se-
lected for which basic measurable radar signal parame-
ters were �ltered. The three copies of radars are shown
in Figs. 3�5. Figures 3 and 4 show the graph depicting

Fig. 3. A graphic depicting of basic measurable param-
eters of the radar signal, i.e. RF, PRI and PW for three
selected copies of the same type of radars.

Fig. 4. A graphic depicting of basic measurable param-
eters of the radar signal i.e. PRI and PW for three se-
lected copies of the same type of radars.

Fig. 5. Radio frequency histogram for three selected
copies of the same type of radars.
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basic measurable parameters of the radar signal, i.e. RF,
PRI and PW for three selected copies of the same type
of radars. In Fig. 5 we can see RF and PRI histograms
for three selected copies of the same type of radars.
As can be noticed, primary signal parameters such as

PW and especially RF and PRI penetrate each other.
For that reason the identi�cation process of the same
radar copies with the use of classic methods is almost
impossible. The classes of radar models and testing vec-
tors were created on the basis of recorded measurement
vectors with the use of the laid-o� method. The func-
tional of the conformity mark of the test probe with a
particular class was the Mahalanobis (dM), Euclid (dE)
and Hamming (dH) distance given by [11]. The nearest
neighbour criteria were used as the classi�cation crite-
ria and the correct classi�cation indicator was used in
order to assess the quality of the identi�cation process
given in [11�15]. To compare the quality of results of
the classic identi�cation method with the described SEI
method, the following correct identi�cation coe�cients
(CIC) were de�ned:

CIC = Lg/L, (14)

in which Lg is a number of good classi�cations, and L is
a number of all classi�cations.
In this experiment about 300 measurement samples

were examined. Those were received during the record-
ing of radar signals coming from three copies of the same
type of radar. On the basis of recordings test vectors
with primary radar signals parameters were de�ned, i.e.
RF, PRI and PW. Test vectors were de�ned with the
use of holdout method, which uses the available data set
to divide it into two subsets, the third part for training
and the two thirds for testing. Formulae measuring the
distance dM, dE and dH and Eq. (14) de�ned the coe�-
cient CIC, which was estimated as follows: CIC = 0.169
for dM, CIC = 0.218 for dE, and CIC = 0.202 with the
use of Hamming distance (dH). On the basis of the value
of the coe�cient above it can be said that there is no pos-
sibility to identify radar as far as its copy is concerned in
the situation where only primary radar signal parameters
are used. What was used further was the expansion of
the primary features vector with two additional features
i.e. Ŝ and L̂ which were de�ned as a result of Eq. (12) and
Eq. (13), according to the SEI method, which is described
in this article. In this case the coe�cient CIC = 0.916
for dM and CIC = 0.967 for dH and dE. On the basis of
received values of the correct identi�cation coe�cient it
can be said that two additional features i.e. Ŝ and L̂ are
su�cient measures to identify copies of the same type of
emitters.

5. Conclusions

Speci�c identi�cation method of sources of radar emis-
sions presented in this article is based on de�ning two ad-
ditional distinctive features which expand the vector of
primary parameters of a radar signal. The linear regres-
sion method allowed to formalize the notation of mea-
surement function K(fn) and to extract distinctive fea-

tures by mapping the space area under the measurement
function and the length of the arc of the resultant func-
tion. The analysis of the size of the space area and the
estimation of length of its arc introduce additional fea-
tures to the description of a radar copy (the vector of
basic features), which modify the vector of basic measur-
able parameters of the radar signal. The features above
make a piece of distinctive information which is a good
separation measurement in order to distinguish exactly
the copy of these emission sources. Moreover, as a re-
sult of using converted transformations converting sets of
measurement points, the transformation fractal of gener-
alized measurement function appeared.
As can be noticed, generalized measurement function

K̂(fn) has the self-similarity feature i.e. a part of it is
similar to the whole. It can be said that this function
has a fractal character and added that the SEI method
described here bases on �fractal features� of the func-
tion which is received K̂(fn). The measurement function
which is de�ned in the form of a contraction mapping
will be used in further research in order to optimize the
procedure of the speci�c identi�cation of electromagnetic
radiation sources. In further part the authors focus their
research on de�ning the fractal size of received geomet-
rical object K̂(fn).
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