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1. Introduction

This contribution presents an overview about the chal-
lenges as well as about past and present strategies for
automatic control of the Czochralski (Cz) crystal growth
process, one of the most important growth technologies
used in industrial crystal growth. The demand for crys-
tals of well defined structural, chemical and electrical
properties produced with a maximum rate of yield and
reproducibility was — and still is — the driving force to
develop highly sophisticated automatic control systems.
In this growth method, as it is mostly practiced nowa-
days, the crystals are grown freely from the melt, i.e.,
there are no shaping devices ensuring a constant or well
defined diameter which is mainly important in matters
of technological requirements. (Some variants of the Cz
process used a so-called coracle — a floating diameter-
-defining aperture made from sintered silicon nitride — to
ensure a stable thermal regime around the growing crys-
tal and hence to stabilize a constant diameter, cf. [1].)
The better it meets the desired diameter and the better
its constancy, the less material has to be cut off after
growth. On the other hand, strong diameter changes in-
fluence the structural properties of the crystal [2—6].

Not only the diameter, also other quantities like the
crystal growth rate are of special importance. The
growth rate directly influences the properties of the grow-
ing crystal. It correlates with the amount of imperfec-
tions, like polycrystalline growth, twins, dislocations as
well as the amount of native point defects, residual impu-
rities and that of intentionally introduced dopants. Con-
sequently, for process technology there is a huge interest
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in growth rate control also, especially in silicon crystal
growth where the relation between growth rate and ther-
mal gradients at the interface is of great importance in
order to ensure an extremely low content of point defects
[7-12].

No matter which control strategy is chosen to address
these issues, the Cz system is an extremely challenging
control object giving control engineers a headache for
decades now. These issues are subject of Sect. 2.

When designing a control system the first task is to
characterize the dynamic relations between the manip-
ulated and the controlled variables. Based on these re-
sults a control structure is chosen. A large variety of
approaches are provided by modern control theory. Such
a control system does not only consist of a feedback con-
troller, but also on equipment realizing the feed-forward
control, the reference trajectory planning and the recon-
struction of not directly measured variables. Different
levels of mathematical complexity, questions about lin-
ear or nonlinear control design, robustness and real-time
capability make things more difficult. Section 3 gives an
introduction to the basic terms and approaches used in
control technology as required for the Cz process.

When the Cz process was introduced into industrial
germanium growth [13, 14] the weight measurement of
the crucible or of the growing crystal to control the heater
power [15] was used. In contrast to that Patzner et al.
used an optical sensor manipulating the pull rate for sili-
con [16]. Nowadays, diameter control has been developed
for a variety of different materials and system configura-
tions, where many complex problems have been identified
such as materials with hard to control conditions that re-
sulted either in high dislocation densities or large growth
and shape variations, as well as the challenges in scale up
of the process for larger crystal sizes [8, 11, 17-22]. Other
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examples are the use of a liquid encapsulant [23, 24] in-
troducing time delays into the process [25, 26] or more
sophisticated variants of the Cz process, like the vapor
pressure controlled Czochralski (VCz) method [27] which
intentionally leads to reduced axial and radial tempera-
ture gradients making diameter control even more diffi-
cult [28, 29]. More recently, the focus of control design
has been extended to maintain additional degrees of free-
dom which affect crystal quality as well as crystal shape
during the neck, shoulder and tail sections in addition to
the main body [30, 31]. In Sect. 4 selected strategies will
be discussed.

2. Specific characteristics of the Cz process

The aim of process analysis is to gain insight into its
dynamical behavior using powerful methods provided by
systems theory. For this purpose a wide range of analysis
methods exist. First analysis of the principal system be-
havior in order to improve diameter feedback control were
presented by Bardsley et al. in the 70’s [32-36]. Some of
the main results are summarized in the following.

2.1. Meniscus region

The most important region in the Czochralski crystal
growth is the meniscus, the interconnection between melt
and crystal, cf. Fig. 1. The meniscus and its shape re-
sult from gravitational forces and surface tension. At its
upper end the so called phase boundary, or interface, is
located where crystallization takes place. Thereby heat
of fusion (latent heat) is released. Because the crystal is
pulled upward into colder regions of the furnace a tem-
perature gradient is established, which leads to a heat
flow by conduction from the hot interface into the colder
crystal [18]. By this mechanism crystallization is main-
tained throughout the growing process.

Crystal

Interface

Meniscus

free melt
surface level

Fig. 1.

Sketch of the interface region with important
physical quantities.

The amount of heat transported into the crystal con-
sists of two components: the amount of heat transported
from the meniscus region into the interface with radius
r; and the amount of heat released by crystallization. In
general, the following relation holds for the vector v, of
the growth rate along the phase boundary described by
z=2(r), r€0,r]:

vg(r, Z(r)) = —

a psAHg

()\mVTm(r, Z(r))

— )\SVTS(r,Z(r))), r € [0,r]. (1)
In this equation the specific latent heat is denoted
by AH;, the heat conductivities of the solid and the melt
are given by As and Ay, respectively, and Ty(r,z) and
Ty (r, z) represent the temperature of the solid and the
melt. The density of the crystal at the interface (at melt-
ing temperature T;) is given by ps. A necessary condition
for growth is that the growth rate is positive, i.e. the heat
flux is directed from the melt into the crystal.

Changes in the temperature gradients on the melt or
solid side of the phase boundary lead to an immediate
change of the growth rate, as can be easily seen from
Eq. (1). On the one hand, a local change of the growth
rate results in a deformation of the phase boundary and
in a change of the crystal diameter if this deformation is
located at the rim of the interface. On the other hand,
a change in interface geometry again initiates a change in
heat transport. Furthermore, the shape of the meniscus
strongly depends on the radius r; of the crystal at the
interface as well as on the growth angle a = o + o; with
the equilibrium growth angle o and the crystal slope
angle o [37-39], cf. Fig. 1. This means that changes in
the meniscus shape initiated by changes in the geome-
try result in an immediate change of the heat balance
in this region, with the consequences described above.
This consideration leads to the conclusion that the de-
mand of growing crystals of well defined shape requires
exact control of the thermal conditions in the interface re-
gion. Without any precise measurements characterizing
the state of this region this is an overwhelming task. An
approach trying to realize such a direct control by blow-
ing inert gas around this region is presented by Brice [40].
However, usually any measurements available at the pro-
cess are more or less distant to this region complicating
the control of the process.

2.2. Measurement issues

The quantities which one would like to control are the
crystal diameter and the crystal growth rate. Unfortu-
nately, these quantities cannot be directly measured. As
an alternative the force acting on the pulling rod (or
the crucible) [15] or the diameter of a bright ring on
the meniscus resulting from reflections of the hot glow-
ing heaters [41] are available. For example, in the liquid
encapsulated Czochralski (LEC) process the crystal di-
ameter is not directly measured because of a boron oxide
layer covering the melt. Hence, in this process the weigh-
ing method is used.

The idea behind the weighing technique is that — at
a first glance — the rate of change of the force acting
on the load cell might be proportional to the crystal
cross-section area at the growing interface. This can be
evaluated by a controller. However, the measured force
is also influenced by forces resulting from the meniscus
[34, 42] making the correct interpretation of the signal
more complicated. Furthermore, if the density of the
solid is smaller than the density of the liquid, a well
known anomaly comes into play which consists of the
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fact that, e.g., an increase in the differential weight gain
signal does not necessarily reflect an increase of the crys-
tal diameter. The reason for this effect is that an in-
creasing crystal diameter first results in a decrease of the
meniscus-height and of its volume (cf., Fig. 2, middle).
Since the density of the melt is larger than the density
of the solid, a decreasing meniscus-volume makes the dif-
ferential weight gain signal decreasing at first although
the crystal diameter is increasing (cf., Fig. 2, bottom).
For materials which do not completely wet their solids,
i.e.,, By # 0, a similar effect can be observed since an
increase in crystal diameter (o; > 0) leads to a reduction
of the vertical component of the surface tension acting
on the crystal (its vertical component is proportional to
cos( @y + ai)). Unfortunately, all commonly grown semi-
conducting materials show this effect.

Crystal diameter:

Meniscus height ~ \_

Mass load cell 1st.. derv.

dm -———=
dt e .
— anomaly
---+ normal

Time

Fig. 2. A slight change of the crystal diameter (top) re-
sults in a temporarily break-in of the differential weight
gain signal (bottom). The reason for that is the reduc-
tion of the meniscus height during the diameter transfer
(middle). After [34].

The anomaly also leads to crucial problems during the
transfer from the shoulder into cylindrical growth, cf.,
Fig. 3 (top): a sudden increase of the derivative of the
force acting on the load cell with respect to time is ob-
served just before the crystal diameter reaches the cylin-
der. This behavior can be explained by the fact that the
shape of the meniscus changes significantly at this phase
of the process [30].

More detailed discussions with respect to this subject
can be found in [42-44]. The strength of the effect de-
pends on several factors discussed in detail in [35]. Es-
pecially the growth rate is of great importance. Roughly
speaking it can be summarized that the lower the pulling
speed the stronger the effect. Measurement of the diam-
eter of the bright meniscus ring, as it is widely used in
silicon growth, is affected by a similar anomaly [17].

Yet another factor limiting the weighing technique is
the diameter of the crystal body. The larger it is the
stronger the load cell measuring the force has to be. How-

&= R/ — Mass'load cell, 1st derv.
<\ o Ol diameter
S
S| s/ = Massload cell, Istderv.
K :-- Crystal diameter:
Time
Fig. 3. Top: increase of the derivative of the differ-

ential weight gain signal before the crystal reaches the
phase of cylindrical growth. Bottom: in case of the
LEC-process an “aftershock” occurs in the differential
weight gain signal when the crystals emerge from the
boron oxide layer. The dashed curves represent the cor-
responding diameter trends.

ever, the stronger the load cell the more inaccurate it
becomes for small loads. This is problematic especially
during the initial phase of the process.

2.8. Batch character and time delays

The Cz process is a so-called batch process. This
means that it does not have a steady state operating
point. This mainly results from the fact that the whole
system configuration changes during the growth: while in
the beginning one has a crucible filled with melt, one has
a nearly empty crucible and a crystal at the end of the
process. The falling melt level leads to an ever-changing
heat entry from the heaters into the system. Thus, the
process dynamics changes heavily throughout the pro-
cess. Understanding the influence of these variations on
the process dynamics provides a foundation for develop-
ing a robust process control system. Detailed discussions
on these subjects can be found in [2, 17, 45, 46].

In case of LEC growth, the influence of the boron ox-
ide layer comes into play. One has to take into account
the buoyancy as well as the time delay introduced by
the emerging crystal, resulting in additional dynamical
effects. For example, Fig. 3 (bottom) shows an “after-
shock” occurring in the differential weight gain signal
when the crystal begins to emerge from the boron oxide
layer. These effects are discussed in [25, 47, 48] and must
be carefully considered during control system design.

2.4. Modeling issues

Today, modeling and computer simulation play an im-
portant role in crystal growth process design as well as
in control applications. For example, whenever no direct
access to certain quantities in a process is possible dy-
namic mathematical models are used to establish some
kind of connection between the measured and the not
measured quantities in order to reconstruct the values
of the latter ones. However, since the dynamics of the
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process is mainly driven by complex nonlinear radiative,
conductive, and convective heat transport phenomena, it
cannot be fully captured through a linear model [2, §].
Especially the fact that the warm regions of this process
are found at the bottom while the colder ones are lo-
cated at the top of the plant leads to strong convection
phenomena which cannot be neglected. Hence, one has
to switch to nonlinear multi-dimensional time dependent
models which are more complicated to handle. Above
all, the Cz process is a system with free boundaries (the
solid-liquid interface and the crystal shape) making it
even more complicated to solve the underlying dynamic
equations. Many unknown physical parameters and the
complex structure of the inner assemblies worsen the sit-
uation. Here, from a control technological point of view,
one has to find a balance between accuracy and real time
capability of the model [21, 30].

2.5. Stability

An important matter in control theory is the question
if the system under consideration is stable or not, since
unstable systems have a limitation to achievable control
performance. When discussing this subject it is very im-
portant which type of model is used for stability analy-
sis and which physical effects are included in the model:
Surek’s initial stability analysis was only of the capillary
problem, i.e., for the meniscus region [49]. He came to the
conclusion that the capillary system is unstable. How-
ever, if the heat fluxes are taken into account, one comes
to a different conclusion, depending on the assumptions
made during modeling. Thus, Refs. [39, 50-52] as well
as [53] show stable behavior of the growth system un-
der certain operating conditions. Nevertheless, Refs. [54]
and [55] show that the system is unstable for the cases
they evaluated, even if the thermal effects are included
in the analysis.

3. Components of a control system

The intention of this section is to introduce some of
the basic concepts used in control technology as far as
they are required for an understanding of the numerous
strategies for control of the Cz process. For this purpose
the essential components of a control system are shortly
summarized (cf. Fig. 4) followed by a discussion of the
way mathematical models are used for control purposes,
which differs from the way they are used for thermal anal-
ysis or plant and process design.

3.1. Reference trajectory generator

Depending on time or crystal length a reference tra-
jectory generator calculates reference values for crystal
radius and growth rate or other useful quantities. In
the simplest case the trajectory generator holds a fixed
value, often called the setpoint or “hand value”. Plan-
ning of trajectories has to consider the physical proper-
ties of the system in order to avoid, e.g., impossible values
for the control inputs. Furthermore, one cannot request
physically impossible behavior from the system, such as
steps in any of the system quantities or their derivatives.

unknown/
not measured
disturbances
Manipulated
values

Reference
Reference

Vﬂlues‘l Feedforward
trajectories 'l control

Control

loop :

Reconstructed
variables

Measured
variables

Control
difference

Observer

Fig. 4. Sketch of a modern feedback control loop.

It may be useful to reschedule the reference trajectories
during growth to guarantee smooth behavior of the con-
troller.

3.2. Feed-forward controller

The feed-forward control calculates the manipulated
values (like heater power or crystal pulling rate) from
the reference values generated by the trajectory genera-
tor. This can be done empirically or by means of a math-
ematical model describing the system behavior. The lat-
ter strategy is also known as the solution of the inverse
problem, in contrast to the forward problem which con-
sists of the solution of a dynamic model depending on
given initial values and given trajectories for the inputs.
For example, one has a system with the manipulated vari-
able u € R, the output variable (to be controlled) y € R
and two internal states x1,z9 € R. Its dynamics is cap-
tured by the following model:

’ij‘l = T2, (2&)
By = 23 4 (29 + 2)u, (2b)
Yy =T (2¢)

From this model a model based feed-forward control can
be easily calculated. Solving Eq. (2b) for u one obtains

d 2

T — I7
== 1 3
U= 3)

Now, one would like to steer the system, namely the out-
put y, along a reference trajectory t — yer(t). This
reference trajectory is assumed to be twice continuously
differentiable, i.e., Yref(t), Urer(t) exist. Since according to
system (2) one has 1 =y, x2 = &1 = 9, and 5 = § the
resulting reference trajectory for the manipulated vari-
able u reads (cf. Eq. (3)):

Yret — yr2ef (4)
yref +2 ’

Using the values from the feed-forward control one
might be able to steer the system along its reference
trajectory if the system is stable, only small perturba-
tions are acting on the system, and the model is accurate
enough.

3.8. Feedback controller

The feedback controller compensates for disturbances
acting on the process. Furthermore, it is responsible for
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correction of modeling errors resulting in inaccuracies of
the feed-forward control. This is achieved by feedback of
the measured variable (or its estimate) and a correction
of the input calculated by the feed-forward control.

It is common practice to realize feedback control by
means of a PID controller. The PID controller processes
a deviation e(t) between the desired and the real value
of the variable to be controlled in order to calculate a
change Au(t) of the manipulated variable

Au(t) = Kpe(t) + K /t e(r)dr + KD%(t). (5)

The dynamic behavior of the PID controller is deter-
mined using the three real constants Kp, K1, and Kp.
It is an implementation of the following natural assump-
tions: (i) The larger the control deviation, the larger one
has to counter steer, an implication which is covered by
the proportional part Kpe(t). (ii) The longer the control
deviation is pending, the larger the manipulated variable
has to be changed in order to reduce it. This behavior
is realized by the integral part parameterized using the
factor Ki, the second term in Eq. (5). (iii) The faster the
control deviation changes, the stronger one has to coun-
teract — this is covered by the third term in Eq. (5) —
the differential part with parameter Kp.

The PID controller has several advantages: its operat-
ing principle is simple, it can be easily implemented, if
certain conditions are hold it can be adjusted using some
simple rules, it is suitable for a wide range of technolog-
ical systems found in practice. However, there are some
drawbacks: it is a linear controller. This means that
its parameterization is adjusted for a certain operating
point of the process. If one does not have an operat-
ing point (as it is the case in the Czochralski growth, cf.
Sect. 2.3), parameters have to be continuously changed
during the growth. The same holds for an intention-
ally initiated change of the operating point during the
process. The performance of PID controllers is limited
if the system shows nonlinear behavior. The reason for
this is the fact that a change of the manipulated vari-
able is processed nonlinearly in the process resulting in
“unexpected” reactions (in comparison to a linear one)
of the system. Situation worsens if the system contains
time delays. In this case a reaction of the system to a
change of the manipulated variable appears delayed by
the delay time 7. This may result in an undamped in-
creasing integral of the PID algorithm (cf. Eq. (5)). In
the Czochralski crystal growth the LEC process with its
boron-oxide layer covering the melt belongs to the class
of delay systems. In summary, a PID controller does not
necessarily fit the dynamics of the system, especially if
the order of the system is larger than two. Therefore, it
may be very time consuming to find appropriate parame-
ters. Consequently, the performance of diameter control
based on the use of linear PID controllers, the parame-
ters of which are chosen heuristically, is limited [8, 43,
56, 57].

Fortunately, theory and application of control systems
have been developed very rapidly in the last decades. In-
creasing capacity of micro-controllers and programmable
logic controllers (PLC) combined with powerful math-
ematical control design methods prepared the ground
for the use of sophisticated model based controllers in
practice. A model based controller uses a mathematical
model of the system, i.e., its structure and parameters
fit to the system. This means that the controller can
be used in a wide range of operating points and reflects
the nonlinear system characteristics as well as time de-
lays. In addition, parameterization effort is dramatically
reduced. Anyhow, although model based control sounds
promising, such controllers do show good performance
only if the underlying model matches the structure and
the parameters of the system appropriately. It will be
shown in the following sections that this fact is the cru-
cial point when trying to enhance the capability of con-
ventional control systems.

In order to make the strategy of model based control
more clear, the design of a simple nonlinear feedback con-
troller based on a lumped parameter model is sketched.
Again, the system (2) of the previous section is used. One
wants to make the output y follow a reference trajectory
Yref(t). For this one defines the tracking error y — yyef-
Now the controller is designed in such a way that the
tracking error satisfies the linear second order differen-
tial equation

(gfyref)+k1(y*yref)+k0(y7yref) =0 (6)
with kg, k1 > 0.

The values of Yref, Yref, and frer are defined by the
reference trajectory. If one desires the dynamics of the
tracking error to satisfy Eq. (6) the second time derivative
of the output y must behave as

G = Gret — k1(9 — Uret) — ko(y — Yret)- (7)
This can be achieved by a proper choice of the input
u because by inserting the right hand side of (7) in the
equation used for calculation of u (cf. Eq. (3)) one obtains

@y —af _ §—y?
To + 2 y—|—2
_ :’:/.ref - kl(y_ yref) - kO(y_yref) _y2 (8)
Y+ 2 )

This equation determines the manipulated variable u
in such a way that the tracking error satisfies the given
error dynamics (6). The coefficients ko, k; in Eq. (6)
are the controller parameters, the real value inputs are
y,9, and the desired value inputs are yref, Yref, Jref. Lhe
coefficients kg, k1 define the dynamical behavior of the
tracking error, i.e., the way the error converges to zero
(e.g. fast with an overshooting or slowly creeping).

3.4. State estimator

Finally, it is not always possible to measure the con-
trolled variable (in case of the Czochralski method the
radius) directly. In that case one can reconstruct this
variable from the measured variable by means of a (pos-
sibly nonlinear) observer if a suitable model of the sys-
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tem is available and the system is observable (a system
property discussed later).

In order to overcome this difficulty one has to recon-
struct the crystal radius from the measured force. This
can be done by a so-called “observer”. It is based on the
following idea. Assume a mathematical model

&(t) = fi(z(t), u(?)), y(t) = folz(t),u(t)), (0) = zo

of a process with (x(¢),u(t)) € R® x R" and y(t) € R™.
If some components of x are not directly measured, one
might implement a “copy”

HE) = (@0 ult), 5(0) = o(#(0),u). 3(0) = 7o
of the system model in a computer program. The trajec-
tories of the manipulated variables u acting on the real
system are fed into this computer program, too. Then
one has access to all components of #. Since the initial
values of Z are not known, i.e., &g # x(, and because of
model inaccuracies as well as disturbances acting on the
system, generally the values calculated for (t) will not
be equal to the real values z(t). However, under certain
circumstances it is possible to inject the error § — y be-
tween the estimated value § and the measured value y
in such a way that the difference between the calculated
value z and the real value z will converge to zero as time
advances [58]. In this case the system

2(t) = h(z(t), u(t), §(t) — y(1)),

i(0) = Fa(2(0) u(t)
is called an observer.

Design and dimensioning of the injection of the error
related to the measured variable is the key task when de-
veloping an observer. However, it is important to know if
it is possible to reconstruct a quantity from the measured
variable at all. This property is commonly referred to as
“observability”.

3.5. Modeling in crystal growth analysis and control

A short comparison on how models are used in au-
tomatic control in contrast to numerical approaches in
crystal growth will be given here, since between both
fields the approaches and requirements differ quite a bit.

A mathematical model which takes the spatial distri-
bution as well as the time dependence of material pa-
rameters into account leads to a system of coupled par-
tial differential equations with the corresponding initial,
boundary, and compatibility conditions. They belong to
the so-called infinite dimensional or distributed parame-
ter systems. Such systems are usually solved numerically
using finite element methods (FEM). Using this approach
one can obtain results reflecting the reality rather accu-
rately. FEM is an absolutely essential resource in solving
problems in plant design, thermal and stress analysis, etc.
However, computational effort increases dramatically de-
pending on the accuracy required, especially for solving
time dependent problems.

The approach used in model based control is to keep
the models as simple as possible. This is done in order to
be able to run the models on the limited computer hard-
ware usually available at the growth furnaces. This is

achieved by partitioning the system under consideration
into domains which may reasonably well be considered
as homogeneous, i.e., the material parameters which are
assumed to be constant. Heat and mass transfer between
these domains are calculated from appropriate mass and
energy balance equations. Since spatial dependence of
the parameters is neglected, one ends up with a set of
ordinary differential equations. Such models are called
finite dimensional or lumped parameter models. Using
such models one can calculate the basic system behavior
leading to a qualitatively and quantitatively sufficient in-
sight into the process. Powerful methods for controller
and observer design, trajectory planning, and dynamic
analysis exist for this class of models. The lack of accu-
racy can be admitted by the introduction of feedback.

A global lumped parameter model of the overall
Czochralski crystal growth system was first presented by
Steel and Hill [59]. In order to simplify and improve
parameterization of PID controllers they analyzed a lin-
earized model in terms of a transfer function in several
growth stages. The central idea of their approach consists
in partitioning the Czochralski system into the four ar-
eas: melt — meniscus — crystal — ambient. This is still
the basis of all lumped parameter models of the Czochral-
ski process used to date. Using their method an a priori
controller design could be dramatically improved, thus,
avoiding time consuming empirical parameterization of
PID controllers. However, this requires sufficient accu-
racy of the model.

Analysis of steady state conditions, the dynamics of
the process, and optimal control design using lumped
parameter models (in terms of a state space model)
is subject of investigations presented by Satunkin and
Rossolenko for the standard Cz process [20] as well as for
the LEC process [60]. Considerations of optimal refer-
ence trajectory planning based on such models has been
given by the same author in [61]. A compilation and
extension of these results is presented in [31].

A very comprehensive and detailed model based analy-
sis of the global Czochralski system is presented by Gevel-
ber et al. [17, 43, 56, 57]. The first two publications of
this series are based on a 7th order lumped parameter
model of the process while the latter ones make use of a
more refined model.

Thorough analysis approaches based on distributed pa-
rameter models (treated for the quasi-stationary case)
have been presented by Derby et al. [18, 19, 62, 63]. The
great advantage of these approaches is the fact that the
heat flow in the plant can be modeled quite accurately.
However, much effort is necessary to adapt the models
to the actual plant design and to determine the physical
parameters needed in the model with sufficient accuracy.

4. Approaches for control of the Cz process
4.1. State estimation

In case of the Czochralski crystal growth the measure-
ment of the crystal diameter, the primary variable to be
controlled, is quite a complex task. Three different ap-
proaches exist:
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1. Optical capturing of meniscus shape, typically by
detecting the bright meniscus ring [16, 41, 64, 65].

2. Evaluation of the force acting on a load cell
mounted at the top of the pulling rod [15, 32,
34-36]. Also weighing of the crucible is possible
[66, 67].

3. Image processing of the whole crystal [68, 69].

Optical imaging of the bright meniscus ring, which re-
sults from reflections of light emitted by the heaters, is
the most important measuring technique used in silicon
crystal growth. Here, one has to take into account that
what is measured is the diameter of the meniscus at a cer-
tain height, not the crystal diameter at the three phase
boundary. This means that the anomaly (cf. Sect. 2.2)
comes into play: if the crystal radius begins to decrease,
first the meniscus height will increase. This means that
the diameter of the bright meniscus ring will increase
which might result in incorrect reactions of the controller
if it is not adapted to this behavior [17]. A detailed dis-
cussion on how to obtain an estimate of the real crystal
diameter from the camera system is given in [70, 71].

In case of the liquid encapsulated Czochralski process
where melt and meniscus are covered by a layer of boron
oxide only the second technique can be applied. It is also
often used when no camera system for the detection of
the bright meniscus ring is available or applicable. It is
based on the following idea: the gravitational force F. of
a rotationally symmetric crystal of length [ and density
ps can be calculated by integration of

l
F. = mgp, / r2(A)dA 9)
0

with crystal radius r; and gravitational acceleration g.
Actually the force measured by the load cell is not equal
to F in Eq. (9). In fact it is also influenced by forces
resulting from the surface tension of the meniscus, the
hydrostatic pressure of the melt raised over the melt level,
and in case of LEC by the buoyancy forces resulting from
the liquid boron oxide. For this reason things become
considerably more complicated as it might seem from a
first glance on Eq. (9). Details are discussed in [22].
The reconstruction of the crystal diameter and other
quantities by means of an observer (cf. Sect. 3.4) is the
subject of several publications. Satunkin and Leonov dis-
cuss the question of observability in case of Cz and LEC
growth in [44]. The discussion is based on a linearized
model of the overall process which is bound to the knowl-
edge of some thermodynamical parameters. An elegant
approach is presented in [72, 73] where, roughly speaking,
an iterating algorithm is used which fits the theoretically
calculated mass of the load cell to its real value by heuris-
tically changing the crystal diameter in every step. How-
ever, this algorithm contains a parameter which must be
empirically determined to guarantee convergence. A re-
duced order nonlinear tracking observer for the Cz and
the LEC system including full meniscus dynamics is pre-
sented in [22]. As far as the system is tracked along its

reference trajectory this approach produces very accurate
results.

If the influence of the changing meniscus can be more
or less neglected, a simple approach is presented in
[74, 75]. Here the basic idea is to exclude the menis-
cus dynamics from the model making it easy to solve
the remaining equations for the radius. This method is
useful for reconstruction of the radius during cylindrical
growth and for crystals with slowly increasing diameter
in the cone. If one is obliged to grow crystals with large
slope angles in the shoulder this method fails, especially
when fading into the cylinder.

The third method has no technological relevance be-
cause, on the one hand, it is very complicated to be real-
ized and, on the other hand, because changes in growth
are detected when they have already influenced the crys-
tal (which is actually not the case when using the first
and second technique where changes in the meniscus pre-
ceding a change in the crystal are detected) [76].

4.2. Feed-forward control

As described in Sect. 3.2, feed-forward control is an
essential part of the overall control system. In crystal
growth, a common method in practice is to determine
the feed-forward control by careful analysis of repeated
growth runs, resulting in a trajectory for the control in-
puts which can then be used as part of the recipe.

While this method is widely accepted it suffers from
the fact that it is extremely time consuming and, thus,
expensive, but functions if the same conditions are re-
peated and there are no significant variations from run
to run. However, any change in plant setup or change
in desired crystal cylinder diameter means repeating this
procedure. Finally, not all details of the system dynam-
ics can be determined by this empirical approach. If a
sufficiently exact model of the process is available, this
model can be used as a basis for determining proper feed-
-forward control trajectories which then can be fine-tuned
in an empirical manner afterwards.

Such lumped parameter approaches are presented
in [45] (4" silicon), [75] (InP), and [77]. Since the under-
lying models neglect the spatial distribution of system
properties (cf. Sect. 3.5) most often some empirical cor-
rections (e.g. in [75]) are introduced to fit the result to
reality. An approach trying to circumvent this problem
is proposed in [78], basing on a mathematical description
regarding the most important qualitative dependences
between the relative changes of manipulated and con-
trolled variables during growth. For a certain thermal
setup this approach allows to easily calculate reference
trajectories for different crystal shapes and growth rates.

In order to overcome such limitations one may describe
the system behavior without neglecting the spatial de-
pendence of some of the system properties. Then one
is confronted with the problem of numerically solving a
set of time dependent 2D /3D partial differential equa-
tions with free boundary conditions. Even though pow-
erful finite element methods for solving such problems
exist, and computational performance has dramatically
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increased in the last years this still is one of the most
challenging tasks [79]. The situation gets even worse if
feed-forward trajectories need to be rescheduled in real
time during growth, for instance in order to react to some
perturbations [80]. Extensive studies on this task can be
found in [81-84], presented for the examples of growth of
large diameter silicon and germanium crystals.

In order to reduce the computational effort one might
restrict the problem to the quasi-stationary case. The
feed-forward trajectory is then generated piecewise. This
very powerful strategy has been presented in detail by
Derby and Brown in [18, 19]. An approach using a sim-
plified 2D-model especially designed for control purposes
can be found in [85].

4.8. PID based control using optical diameter estimation

In Refs. [16, 41] a method for determining an estimate
of the crystal radius is presented using optical imaging.
The idea is based on the fact that light emitted by the
red-hot heaters is reflected in upward direction from the
meniscus. These reflections can be seen and detected
by an optical camera as a so-called “bright ring”. Then,
image processing software is able to determine the diam-
eter of the ring in real time. This value, scaled by an
empirically determined factor accounting for the differ-
ence between measured meniscus and expected crystal
radius, is used as the measured variable in the control
system. Since silicon has a large Laplace constant (i.e.,
high surface tension and low density resulting in large
meniscus heights) and because of its metallic reflectivity
this material is an obvious candidate for this technique.
Hence, although the crystal radius itself is not measured,
this technique is widely and successfully used especially
in silicon Cz growth [65, 86].

When designing a control system which tracks crystal
diameter and growth rate (cf. Sect. 1) one has to reflect
the different time constants the available control inputs
have on the system: (i) Changes in pulling speed are af-
fecting the system quite quickly; (ii) changes in heater
power need some time depending on the thermal condi-
tions occurring in the system [17, 43]. Therefore, most
often a cascaded control structure is chosen, assuming
that pulling speed vy, is more or less equal to the growth
rate (cf. Fig. 5) [87].

Up,ref

Tiref  Ar
—»O—»‘ PID }»
T A

Pref

Fig. 5. Cascaded PID based control scheme utilizing
pulling speed and heater power for diameter control (ac-
cording to [87]).

Deviations Ar; from the reference value 7 yer of the
crystal radius r; are fed into a PID controller manipu-
lating the reference value vy, ror of the pulling speed by

an amount of Av,. This value, indicating a deviation of
the real pulling speed trajectory from its pre-calculated
reference value, is also fed into a second PID controller
manipulating the reference value P,s of the heater power
by an amount AP. By this strategy it is ensured that
the system is able to react quite quickly on perturbations
occurring in crystal diameter. Accumulated deviations in
the pulling speed trajectory lead to a change of the heater
power trajectory, ensuring that the system is kept on its
reference state in a long term manner. Especially the
pulling speed is brought back to its reference.

This control approach requires very careful planning
of the feed-forward trajectories, especially for the pulling
speed needed to obtain a certain growth rate trajectory.

4.4. PID based control using weight measurement

If one does not have the possibility to capture the di-
ameter of the bright meniscus ring, the usual control
strategy is to use the crystal or the crucible “weight” as
measured variable [15, 88]. The basic idea is to measure
the force acting on the pulling or crucible rod and to
compare it with the required force resulting from the ref-
erence shape of the crystal [32]. The deviation between
both values is used to drive a PID controller manipulat-
ing the heater power. Crystal weighing is preferred due
to problems of evaporation of material from the charge
and the crucible in case of crucible weighing. When us-
ing rf-heaters additional vertical forces induced in the
susceptor come into play also [86].

4.4.1. Control system design

In Fig. 6 the structure of a weight based control system
is sketched. One has to distinguish between two modes
of operation [86]:

Differentiated
mode
mTef Pref
| A +
>0 AP
PID
Am
Myef m
Filter
Weight mode
m Filter +
Derivative |

Fig. 6. Weight based PID control scheme utilizing
heater power for diameter control.

Weight mode. The weight measured by the load cell
is compared to the reference value and the difference is
used as an error signal for the PID controller. Hence, in
this mode the controller tries to keep the weight on its
reference value, meaning that a previous error in crystal
radius later results in an error of opposite sign. Thus,
oscillations may occur. However, this mode circumvents
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noise generation by numerical differentiation of the force
raw signal as required in differentiated weight mode.

Differentiated weight mode. The force raw signal is
differentiated with respect to time and then compared to
the reference value resulting from the predefined shape of
the crystal. If one neglects the dynamics of the meniscus
this signal is proportional to the crystal radius, i.e., this
mode tries to keep the radius on its reference value with-
out being influenced from the past. The differentiation
of the raw signal leads to a phase advance in the control
system which tends to make the system “more stable”.
On the other hand, sophisticated signal processing and
filtering methods as well as high resolution load cells are
required.

The most crucial part in this technique is the anoma-
lous behavior of the signal, cf. Sect. 2.2. The conse-
quence of this anomaly is that the performance of the
control system is fundamentally limited. The controller
“is only allowed to respond carefully” to any sort of per-
turbation since they could be of opposite direction not
indicating what really goes on at the interface. For ex-
ample, if the radius of the crystal increases, the controller
would have to increase heater power in order to counter-
act this perturbation (i.e., the parameters Kp, K1, Kp of
the controller (5) must be chosen positive). However,
what is first detected in this case is a decrease of the
differentiated weight gain signal leading the controller to
decrease heater power, thus countenancing the increase
of the crystal radius.

4.4.2. Improvements and optimizations

In this section some approaches trying to compensate
the problems mentioned above are sketched.

In Refs. [35, 36] Bardsley et al. present a sophisticated
control algorithm containing a method trying to over-
come the problems resulting from the anomalous behav-
ior. They try to estimate the anomalous components in
the measured weight gain signal and subtract them from
the signal. The estimation is done using a linear model
calculating the radius change dr; induced by changes in
heater power. This value can be used for calculating an
estimate of the anomalous component of the signal. Ex-
perimental results presented in [33] demonstrate the per-
formance of this approach. However, it is restricted to
the knowledge of a sufficiently precise model of the pro-
cess, especially of the thermal conditions in the furnace.

A challenging task in this control approach is the choice
of the parameters of the PID controller. Most often this
is done by trial and error. However, there exist some
interesting approaches trying to determine optimal pa-
rameters of the PID controller on the basis of the model
knowledge available. Satunkin et al. [20, 44] proposes an
approach based on a cost functional for adjusting param-
eters in a single as well as in a multi-loop control system
utilizing heater power and pulling speed as manipulated
variables. The same authors present in [44] a modeling
approach focusing on inaccuracies of the weight sensor
and the consideration of these in the control system. An-
other model based approach can be found in [89].

Ag already mentioned the dynamic characteristic of the
process changes during crystal growth. As a consequence
parameters of the PID controller determined for one set-
point may not produce acceptable results as the process
proceeds. The strategy to overcome this problem is to
change the parameters on relevant intervals. This strat-
egy is commonly known as parameter or gain scheduling
in the field of adaptive control [90, 91]. An approach for
Cz growth can be found in [89].

4.5. Model based control

4.5.1. Lumped parameter model based control

In Refs. [17, 43, 56, 57] Gevelber et al. propose a model
based multi-loop control system. The first two publica-
tions of this series are based on a 7th order model of
the process, while the latter ones make use of a more
refined model of order 34. In these publications a multi-
-loop control system is proposed in order not only to
ensure a correct diameter during the process, but also
in order that identifiable disturbances are compensated
before they affect the growth dynamics. Two main dis-
turbances are identified, both related to the melt drop:
the thermal state of the melt, which changes the heat flux
entering the interface, and the thermal environment that
the crystal sees, affecting the heat flux from the interface
and thus the growth dynamics.

By adding, for instance, a closed loop around the melt
temperature, the impact of this disturbance is signifi-
cantly reduced, enabling tighter control of diameter and
thus minimizing growth rate variations in a robust man-
ner (e.g. not sensitive to model error or process varia-
tions). Additionally, this work analyzes the importance
of controlling interface shape in addition to crystal di-
ameter, in terms of meeting additional control objectives
such as keeping thermal stress below a limit in order to
minimize dislocation defects. Controlling interface shape
in addition to diameter, requires the use of additional
actuators, and an important part of the design task is
to select an actuator set that can control both degrees
of freedom relatively independently. To further obtain
design insight Gevelber et al. derive a model which es-
pecially reflects the influence of radiation heat transfer
within the furnace as exactly as possible within a lumped
parameter model.

Another approach is presented in [21, 22]. There, the
fact that it is easy to derive a sufficiently precise model
of the pure meniscus dynamics in contrast to the fact
that such a model of the thermal behavior is not avail-
able is utilized. Using a model of the meniscus dynamics
a model based controller calculates desired values v, yef
of the ratio between pulling speed and growth rate quite
similar to the approach presented in Sect. 3.3. Since one
lacks a model of the thermal behavior, PID controllers
are placed around this model based controller transform-
ing this intermediate value into the inputs pulling speed
vp and heater power P available at the process. This
approach is sketched in Fig. 7. By this strategy a large
amount of lumped parameter model knowledge is intro-
duced into the control system.
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Fig. 7. Combination of model based and PID control
according to [21, 22].

Further model based approaches can be found in [31]
(using a linear state space controller), in [85] (using a
2D-approximation), and in [92] (combining heuristic and
deterministic techniques in the 4” growth of GaAs crys-
tals using the LEC method).

In all cases discussed in this section the overall closed
loop performance is considerably enhanced, however, be-
cause of the lumped parameter character, some more or
less strict constraints exist with respect to process setup,
model validation or trajectory planning.

4.5.2. Distributed parameter model based control

Some publications try to overcome the limitations re-
sulting from the lumped parameter approach by directly
working on the partial differential equations of the dis-
tributed parameter models. Such approaches are for ex-
ample presented by James Ng et al. in [93-95] and Wang
in [96] and are fundamentally important for understand-
ing the dynamics of the process, especially when focus-
ing on the effects related to heat transport phenomena or
variable phase boundary problems. However, for an im-
plementation under real world conditions and controller
parameterization they are not suitable. The reason for
this is that in these models the manipulated variables are
also spatially distributed, e.g. a temperature distribution
on the heater surface. But: what the controller actually
manipulates is the current entering the heater which is a
lumped quantity which is in an unknown way connected
to the temperature distribution on the heater surface.

4.5.8. Model predictive control

A third model based approach is the so-called model
predictive control which is often used in process technol-
ogy. Roughly speaking, model predictive control makes
use of a dynamic model of the process, too. However,
the way of calculating values for the manipulated vari-
able is based on optimization methods, cf. Fig. 8. The
solution of such optimization problems is well known and
widely used in mathematics. For this purpose, in each
time step the set of control activities recorded so far is
evaluated in order to predict the values of the manipu-

lated variable over a finite prediction horizon — based on
the mathematical model and using optimization criteria.
The optimization criteria, in some sense the “parameters”
of a model predictive controller, reflect, for example, the
dynamics of the deviation between desired and real val-
ues [97, 98]. The advantage compared to the approaches
presented in the previous section is that the underlying
models can be arbitrarily complex. The disadvantage
is the enormous computational effort. One has to keep
in mind that for computing a new setpoint value of the
manipulated variable several time dependent solutions of
the model are required.

Reference trajectory

Past inputs
and outputi
Future Predicted
inputs (u) outputs (y) —

States (x)

Constraints

functional (J) Predicted errors

Fig. 8. Model predictive control.

An interesting approach based on this strategy can be
found in [99, 100]. The model used in this approach
is of lumped parameter type. It includes melt convec-
tion, which requires very strict assumptions to be ful-
filled in order to make the model applicable. Another
approach to establish such a model based control on the
basis of a lumped parameter model has been published
by Voronkov et al. [12, 87]. It is closely related to the
vg/G theory [7, 10] which requires very precise tracking
of the growth rate v,.

4.6. Further references

So far, the challenges and some of the fundamental
strategies for controlling the Czochralski crystal growth
process have been presented. Unfortunately, because of
the limited space available in this special issue, many de-
tails had to be skipped in the discussion. For this reason
the reader is referred to much more exhaustive presenta-
tions of these subjects in [31, 73, 101-103].

5. Conclusion

The contribution gives a brief overview of selected
strategies for the control of the Czochralski process. Al-
though a large variety of approaches exist, the control of
this process continues to be a challenging task employing
scientists and engineers all around the world. By the very
nature of the process, model based control is required to
further improve yield and quality of the crystals. How-
ever, the choice of an appropriate model is crucial in this
respect. These models must be simple enough and should
yet cover the main dynamics. For the meniscus dynamics
existing lumped parameter models are sufficient for very
good control results. However, further progress may be
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expected from improved models of the thermal dynam-
ics. These models should to a sufficient extent account
for the spatially distributed nature of the heat transport
phenomena, but they must still be simple enough to be
useful for on-line control and estimation under industrial

conditions.
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