# Silicon Etching in XeF<sub>2</sub> Environment

R. Knizikevičius\*

Department of Physics, Kaunas University of Technology, 73 K. Donelaičio St., LT-44029 Kaunas, Lithuania

(Received February 9, 2011; revised version March 11, 2013; in final form May 1, 2013)

Enhancement of silicon etching rate in  $XeF_2$  environment is considered by a proposed model, which includes processes of adsorption, activation, chemical reactions, relaxation, desorption, and sputtering. The enhancement of silicon etching rate is explained by considering hydrocarbon molecules from background gas contamination in the vacuum chamber, and assuming that hydrocarbon radicals enhance the etching rate. The composition of the adsorbed layer during silicon etching in  $XeF_2$  environment is calculated. It is found that hydrocarbon radicals intensify reaction of  $XeF_2$  molecules with Si atoms on the surface and that this changes the kinetics of the etching rate. Using the obtained theoretical results the difference in kinetics of the etching rates of first and subsequent run is explained.

DOI: 10.12693/APhysPolA.124.137

PACS: 81.65.Cf, 82.35.Gh, 82.65.+r

### 1. Introduction

 $XeF_2$  is a solid white crystal at atmospheric pressure and room temperature, which sublimates at pressure about 500 Pa. Materials commonly used in integrated circuit manufacture, such as photoresist, aluminium, and silicon dioxide, are not attacked by this dry etchant [1]. XeF<sub>2</sub> is the only commercially available xenon derivative. A characteristic feature of this reagent is that it behaves as a fluorinating agent in the gas phase or under irradiation. Silicon etching in  $XeF_2$  environment represents an attractive alternative to study the reactive ion etching process [2–6]. In integrated circuit manufacture, it is required to eliminate several types of wafer contamination which may influence the next step in the etching process and the final reliability of the device. As dimensions of features are decreasing, wafer contamination becomes more and more persistent. The main form of contamination consists of traces of metal, sputtered from walls or electrodes, which are deposited on wafer surface [7]. Depending on the type of reactor and materials used for electrodes, traces of Ca, Fe, Zn, Cr, Mn, Ni, Cu, and K in the range from 0.01 to 0.4 ML may be found on the wafer after etching. Even after extensive cleaning some of these contaminants remain on the surface [8]. Another source of contamination consists of solutions used for photoresist development [9, 10]. The development of sensitive equipment to detect small traces of contamination follows the increased concern about contaminants. However, the influence of activated polymer on the etching rate is little investigated.

In previous works [11, 12], silicon etching in XeF<sub>2</sub> environment was considered. It was found that ion bombardment intensifies adsorption of XeF<sub>2</sub> molecules on the surface and subsequent reaction of adsorbed XeF<sub>2</sub> molecules

with Si atoms. The polymer formed on the surface slows down the etching rate at later stages of the etching process [13, 14]. In this work, the kinetics of the ion-beam--assisted etching rate of Si in  $XeF_2$  environment is investigated. The influence of hydrocarbon radicals on the chemical reactions taking place on the Si surface is determined. Thin vapour-deposited Si films are etched in  $XeF_2$  environment [15]. The etching process is performed in a diffusion-pumped high-vacuum system. It is important to note that photoresist masks are not used in the experiment. XeF<sub>2</sub> molecules emanated from the Knudsen beam at the flow rate  $2.0 \times 10^{15}$  molecules/s. The beam is directed to the film being etched and produced the effective pressure at the surface about  $10^{-1}$  Pa at temperature 300 K.  $Ar^+$  ions are directed to the grounded Si film at normal incidence and bombarded the surface with the energy 450 eV. The etching rate is measured using quartz crystal microbalances. It is found that the hydrocarbon radicals in the adsorbed layer intensify reaction of  $XeF_2$  molecules with Si atoms and that this changes the kinetics of the etching rate. The difference in kinetics of the etching rates of first and subsequent run is explained.

### 2. Model

During Si etching in XeF<sub>2</sub> environment, competition between etching and polymerization processes takes place. The etching process does not proceed by continuous removal of the outermost Si layer, but by the formation of a fairly thick, disordered reaction layer containing SiF, SiF<sub>2</sub>, and SiF<sub>3</sub> species [16–18]. Under certain conditions, the trapped SiF<sub>4</sub> molecules are also observed. The reaction layer is formed when F atoms, produced during dissociative adsorption of XeF<sub>2</sub> molecules, diffuse in the adsorbed layer [19, 20] and near-surface region [4]. The etching process in the presence of polymerizing species is driven by ion bombardment. Polymerization prevails at low energy of incident ions ( $\approx 10$  eV). Meanwhile, at higher energy of incident ions (> 100 eV), the etching process becomes pronounced.

<sup>\*</sup>e-mail: Rimantas.Knizikevicius@ktu.lt

The model is proposed to explain experimentally observed enhancement of etching rate and difference in kinetics of the etching rates of first and subsequent run during Si etching in XeF<sub>2</sub> environment [15, 21]. A mechanism of the enhanced Si etching rate, which is based on the activation of adsorbed hydrocarbon molecules, is used in the model. The mechanism is following: (1) adsorbed hydrocarbon molecules are slowly activated, usually by creating radicals; (2) hydrocarbon radicals in the polymer film enhance the reaction of XeF<sub>2</sub> molecules with Si atoms. Small amounts of hydrocarbon molecules are present in the vacuum chamber. They originate from an oil used in the vacuum pump. XeF<sub>2</sub> and  $C_x H_y$  molecules from the gas phase adsorb on the surface

$$XeF_2(g) \to XeF_2(a),$$
 (1a)

$$\mathbf{C}_{x}\mathbf{H}_{y}(\mathbf{g}) \to \mathbf{C}_{x}\mathbf{H}_{y}(\mathbf{a}). \tag{1b}$$

These processes are characterized by adsorption frequencies  $\kappa_1 = \alpha_1 N(\text{XeF}_2)$  and  $\kappa_2 = \alpha_2 N(\text{C}_x \text{H}_y)$ , where  $\alpha_i$ is the sticking coefficient of *i*-th type species and N(i) is the concentration of *i*-th type species in the gas phase. Adsorbed  $\text{C}_x \text{H}_y$  molecules are activated by incident  $\text{Ar}^+$ ions

$$C_x H_u(a) \xrightarrow{Ar^+} AP,$$
 (2)

where AP is the hydrocarbon radicals in the polymer film. The hydrocarbon radicals have dangling bonds and chemisorb species in the adsorbed layer. The activation process is characterized by activation frequency

$$G = gI_0/C, (3)$$

where g is the activation constant,  $I_0$  is the ion flux, and C is the surface concentration of Si atoms (C =  $1.36 \times 10^{19} \text{ m}^{-2}$ ). The activated polymer relaxes: AP  $\rightarrow$  $C_x H_y(a)$ . This process is characterized by relaxation frequency  $R = \tau_r^{-1}$ , where  $\tau_r$  is the mean relaxation time.

The main reactions, taking place in the adsorbed layer, are the following:

$$Si + 2XeF_2(a) \rightarrow SiF_4(a) + 2Xe(a),$$
 (4a)

$$\operatorname{Si} + 2\operatorname{XeF}_2(\mathbf{a}) \xrightarrow{\operatorname{AP}} \operatorname{SiF}_4(\mathbf{a}) + 2\operatorname{Xe}(\mathbf{a}),$$
 (4b)

$$2C_xH_y(a) \xrightarrow{AP} P,$$
 (4c)

$$P + C_x H_v(a) \xrightarrow{AP} P.$$
 (4d)

It is important to note that these reactions do not represent elementary steps. Rather, they are composite reactions that embody the most important kinetics parameters. The reactions are characterized by reaction rate constants  $k_1$ ,  $k_2$ ,  $k_3$ , and  $k_4$ , respectively. Let us assume that polymer formed during reactions, defined by Eqs. (4c) and (4d), is much slower activated than adsorbed  $C_x H_y$  molecules. The components of the adsorbed layer desorb and are sputtered by incident ions. The removal frequency of *i*-th adsorbed layer component consists of desorption and sputtering frequencies

$$\omega_i = \tau_{i,d}^{-1} + \tau_{i,s}^{-1} = \nu_0 \exp\left(-E_{i,d}/kT\right) + Y_i I_0/C, \quad (5)$$

where  $\tau_i$  is the mean lifetime of *i*-th component,  $\nu_0$  is the oscillation frequency of atoms in the solid,  $E_{i,d}$  is the

desorption activation energy of *i*-th type species, k is the Boltzmann constant, T is the temperature, and  $Y_i$  is the sputtering yield of *i*-th component. Sputtering of activated polymer, polymer, and Si atoms is characterized by sputtering frequencies,  $\omega_i = \omega_{i,s}$ . Ion bombardment increases the removal of SiF<sub>x</sub> radicals [22, 23]. However, this phenomenon does not change the etching rate and is not included in the model.

Components, present in the gas phase and produced during reactions on the surface, are included in the adsorbed layer of one-monolayer thickness. Six components exist in the adsorbed layer: XeF<sub>2</sub>, SiF<sub>4</sub>, Xe,  $C_xH_y$ , AP, and P, with relative concentrations  $c_1 = [XeF_2]/C$ ,  $c_2 = [SiF_4]/C$ ,  $c_3 = [Xe]/C$ ,  $c_4 = [C_xH_y]/C$ ,  $c_5 = [AP]/C$ , and  $c_6 = [P]/C$ . The relative surface concentration of Si atoms is equal to  $c_7 = 1$ . The following system of equations includes rate expressions of processes mentioned earlier and describes the kinetics of component concentrations in the adsorbed layer:

$$\begin{cases} \frac{\mathrm{d}c_1}{\mathrm{d}t} = \beta \kappa_1 - 2k_1 c_1^2 - 2k_2 c_1^2 c_5 - \omega_1 c_1, \\ \frac{\mathrm{d}c_2}{\mathrm{d}t} = k_1 c_1^2 + k_2 c_1^2 c_5 - \omega_2 c_2, \\ \frac{\mathrm{d}c_3}{\mathrm{d}t} = 2k_1 c_1^2 + 2k_2 c_1^2 c_5 - \omega_3 c_3, \\ \frac{\mathrm{d}c_4}{\mathrm{d}t} = \beta \kappa_2 - G c_4 - 2k_3 c_4^2 c_5 - k_4 c_4 c_5 c_6 \\ + R c_5 - \omega_4 c_4, \\ \frac{\mathrm{d}c_5}{\mathrm{d}t} = G c_4 - R c_5 - \omega_5 c_5, \\ \frac{\mathrm{d}c_6}{\mathrm{d}t} = k_3 c_4^2 c_5 + k_4 c_4 c_5 c_6 - \omega_6 c_6, \end{cases}$$
(6)

where  $\beta = 1 - \Theta$  is the fraction of the surface not covered with adsorbate and  $\Theta = \sum_{i=1}^{6} c_i$  is the surface coverage. The etching rate is proportional to the removal rate of formed SiF<sub>4</sub> molecules and Si atoms

$$V = h_0 \left( \omega_2 c_2 + \omega_7 c_7 \right), \tag{7}$$
  
where  $h_0 = 2.72$  Å is the thickness of a monolayer.

## 3. Results and discussion

The experimentally measured kinetics of silicon etching rate in  $XeF_2$  environment [15] is used to determine the influence of activated polymer on the enhancement of etching rate. The experimental and theoretical kinetics of silicon etching rate are shown in Fig. 1. The values of reaction rate constants and frequencies, found by extrapolation from experimental data, are presented in Table. It is observed that ion bombardment increases adsorption of  $XeF_2$  molecules and  $C_xH_y$  molecules. The obtained theoretical results are in agreement with experimental measurements [24]. The removal frequencies of XeF<sub>2</sub>, SiF<sub>4</sub> molecules, and Xe atoms increase in the presence of ion bombardment. The sputter yield of  $SiF_x$  radicals increases with respect to Si atoms due to a decrease in binding energy. Large yields of  $SiF_x$  radicals exhibiting a collision cascade-type energy distribution are observed by time-of-flight experiments [25]. The mean lifetime of  $SiF_4$ molecules in the adsorbed layer in presence of ion bombardment is equal to 19.4 ms. The experimentally measured value is about 40 ms [23]. The difference between



Fig. 1. Experimental [15] (points) and theoretical (curve) kinetics of silicon etching rate in  $XeF_2$  environment.

TABLE

The values of reaction rate constants and frequencies, found by extrapolation from experimental data.

| Reaction rate<br>constant or<br>frequency $[s^{-1}]$ | $t < 200 \ {\rm s}$ | $200 \text{ s} \le t < 650 \text{ s}$ | $t \ge 650 \text{ s}$ |
|------------------------------------------------------|---------------------|---------------------------------------|-----------------------|
| $\kappa_1$                                           | 70                  | 100                                   | 0                     |
| $\kappa_2$                                           | 2.4                 | 3.0                                   | 3.0                   |
| G                                                    | 0                   | 0.027                                 | 0.027                 |
| R                                                    | 0                   | 0                                     | 0                     |
| $k_1$                                                | 0.35                | 0.35                                  | 0.35                  |
| $k_2$                                                | 0                   | 80                                    | 80                    |
| $k_3$                                                | 0                   | 0.50                                  | 0.50                  |
| $k_4$                                                | 0                   | 0.50                                  | 0.50                  |
| $\omega_1$                                           | 0.15                | 51.5                                  | 51.5                  |
| $\omega_2$                                           | 0.15                | 51.5                                  | 51.5                  |
| $\omega_3$                                           | 0.15                | 51.5                                  | 51.5                  |
| $\omega_4$                                           | 0.40                | 0.40                                  | 0.40                  |
| $\omega_5$                                           | 0                   | 0.014                                 | 0.014                 |
| $\omega_6$                                           | 0                   | 0.40                                  | 0.40                  |
| $\omega_7$                                           | 0                   | 0.018                                 | 0.018                 |

theoretical and experimental mean lifetimes is caused by ion bombardment parameters. Ion bombardment driven transport of reaction products through the reaction layer is reaction-rate limiting step at low ion flux [26].

The kinetics of concentrations of adsorbed layer components during silicon etching in XeF<sub>2</sub> environment, calculated using Eq. (6), are shown in Fig. 2. It is observed that, in the absence of ion bombardment, XeF<sub>2</sub>, SiF<sub>4</sub> molecules, and Xe atoms prevail in the adsorbed layer. In the presence of ion bombardment, concentrations of these species vanish due to increased removal frequencies. Concentrations of  $C_xH_y$  molecules and activated polymer increase. The activated polymer intensifies reaction of XeF<sub>2</sub> molecules with Si atoms and enhances the etching rate. At later stages of the etching process, surface coverage by activated polymer increase and the etching rate starts to decrease.

The difference in kinetics of the etching rates of first and subsequent run is observed experimentally [21, 27].



Fig. 2. The kinetics of concentrations of adsorbed layer components.



Fig. 3. Experimental [21] (dashed curves) and theoretical (curves) kinetics of silicon etching rates of first and subsequent run.

It is found that subsequent run starts on a less reactive surface. The proposed model explains the difference in kinetics of the etching rates. It is assumed that  $C_xH_y$ molecules present in the adsorbed layer are activated before the subsequent run ( $C_xH_y$  molecules are activated thermally at zero incident ion energy). The experimental [21] and theoretical kinetics of silicon etching rate are shown in Fig. 3. During the experiment the steady-state etching rate is reached later because of the absence of ion bombardment.

The kinetic chain length of the polymer is the average number of monomers added to each polymerizing radical during polymerization. The kinetic chain length is defined as the ratio of the number of propagation steps to the number of initiation steps:

$$l = \frac{k_4 c_6}{k_3 c_4}.$$
 (8)

The dependence of kinetic chain length on time is shown in Fig. 4. The kinetic chain length increases due to increased adsorption of  $C_xH_y$  molecules when the flow of XeF<sub>2</sub> molecules is switched off. The monomer conversion is calculated using the Carothers equation

$$p = 1 - \frac{1}{X_n},\tag{9}$$

where  $X_n = l + 1$  is the number-average degree of poly-



Fig. 4. The dependence of kinetic chain length on time.



Fig. 5. The kinetics of monomer conversion.

merization. The kinetics of monomer conversion is shown in Fig. 5. The monomer conversion increases due to increased adsorption of  $C_x H_y$  molecules. The kinetic chain length and the monomer conversion increase with the increase of concentration of activated polymer.

### 4. Conclusions

1. The activated polymer intensifies reaction of  $XeF_2$ molecules with Si atoms on the surface and enhances the etching rate at energy of incident ions 450 eV. The increased surface coverage by activated polymer slightly decreases the etching rate at later stages of the etching process.

2. The difference in kinetics of the etching rates of first and subsequent run is due to the activation of  $C_x H_y$  molecules present in the adsorbed layer.

### References

 J. Jeon, A.H. Ma, K. Khosraviani, A.M. Leung, in: 2007 Canadian Conf. Electrical and Computer Engineering, Vancouver, Institute of Electrical and Electronics Engineers, Vancouver 2007, p. 963.

- [2] V.K. Brel, N.S. Pirkuliev, N.S. Zefirov, *Russ. Chem. Rev.* 70, 231 (2001).
- [3] B. Bahreyni, C. Shafai, J. Vac. Sci. Technol. A 20, 1850 (2002).
- [4] H.F. Winters, D.B. Graves, D. Humbird, S. Tougaard, J. Vac. Sci. Technol. A 25, 96 (2007).
- [5] R.C. Hefty, J.R. Holt, M.R. Tate, S.T. Ceyer, J. Chem. Phys. 129, 214701 (2008).
- [6] R.C. Hefty, J.R. Holt, M.R. Tate, S.T. Ceyer, J. Chem. Phys. 130, 164714 (2009).
- [7] P.G.M. Sebel, L.J.F. Hermans, H.C.W. Beijerinck, J. Vac. Sci. Technol. A 17, 755 (1999).
- [8] P. Verdonck, C.M. Hasenack, R.D. Mansano, J. Vac. Sci. Technol. B 14, 538 (1996).
- [9] T. Makino, H. Nakamura, M. Asano, J. Electrochem. Soc. 128, 103 (1981).
- [10] L.K. White, J. Maa, Appl. Phys. Lett. 46, 1050 (1985).
- [11] R. Knizikevičius, A. Galdikas, Lith. J. Phys. 41, 55 (2001).
- [12] R. Knizikevičius, Lith. J. Phys. 43, 135 (2003).
- [13] R. Knizikevičius, Vacuum 81, 230 (2006).
- [14] R. Knizikevičius, Microelectron. Eng. 86, 55 (2009).
- [15] J.W. Coburn, H.F. Winters, J. Appl. Phys. 50, 3189 (1979).
- [16] D. Humbird, D.B. Graves, J. Appl. Phys. 96, 791 (2004).
- [17] D. Humbird, D.B. Graves, J. Vac. Sci. Technol. A 23, 31 (2005).
- [18] F. Gou, A.W. Kleyn, M.A. Gleeson, Int. Rev. Phys. Chem. 27, 229 (2008).
- [19] Y. Fujikawa, S. Kuwano, K.S. Nakayama, T. Nagao, J.T. Sadovski, R.Z. Bahktizin, T. Sakurai, Y. Asari, J. Nara, T. Ohno, J. Chem. Phys. **129**, 234710 (2008).
- [20] Y. Asari, J. Nara, T. Ohno, Surf. Sci. 605, 225 (2011).
- [21] M.J.M. Vugts, M.F.A. Eurlings, L.J.F. Hermans, H.C.W. Beijerinck, J. Vac. Sci. Technol. A 14, 2780 (1996).
- [22] J.L. Mauer, J.S. Logan, L.B. Zielinski, G.C. Schwartz, J. Vac. Sci. Technol. 15, 1734 (1978).
- [23] G.J.P. Joosten, M.J.M. Vugts, H.J. Spruijt, H.A.J. Senhorst, H.C.W. Beijerinck, J. Vac. Sci. Technol. A 12, 636 (1994).
- [24] P.G.M. Sebel, L.J.F. Hermans, H.C.W. Beijerinck, J. Vac. Sci. Technol. A 18, 2759 (2000).
- [25] R.A. Haring, A. Haring, F.W. Saris, A.E. de Vries, *Appl. Phys. Lett.* **41**, 174 (1982).
- [26] R. Knizikevičius, Vacuum **79**, 119 (2005).
- [27] H.F. Winters, D. Haarer, Phys. Rev. B 36, 6613 (1987).