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We consider the coexistent id-density wave order, at the antiferromagnetic wave vector Q = (π, π), represent-
ing the pseudo-gap state, and d-wave superconductivity, driven by an assumed attractive interaction, within the
BCS framework for the two-dimensional fermion system on a square lattice starting with a mean-�eld Hamiltonian
involving the singlet id-density wave and the d-wave superconductivity pairings. The second-neighbor hopping,
which is known to be important for cuprates and frustrates the kinetic energy of electrons, leads to the Fermi
surface sheets being not connected by Q. The signature of the particle�hole asymmetry in the single-particle
excitation spectrum of the pure id-density wave state is re�ected in the coexisting id-density wave and d-wave
superconductivity states, though the latter is characterized by the Bogoliubov quasi-particle bands � a charac-
teristic feature of superconducting state. Quite signi�cantly, we �nd that the coexistence is possible due to the
non-nesting property.

DOI: 10.12693/APhysPolA.124.90

PACS: 74.72.Gh, 74.20.−z

1. Introduction

There are divergent views regarding the origin of the
pseudo-gap (PG) phase and its relation with d-wave su-
perconductivity (DSC). The interpretations run from ex-
positions where the PG is regarded as a superconduct-
ing precursor state involving incoherent electron�electron
pairings above Tc [1, 2] with particle�hole symmetry of
the SC state preserved to others where the PG, dis-
tinct from SC, corresponds to an ordered state with
particle�hole asymmetry and both the phases compete
[3, 4]. In the former, for the underdoped regime, the
pre-formed pairs appear at relatively high temperatures
T ∗ ≈ 200 K compared to Tc ≈ 100 K and one views T ∗

as a �crossover� temperature, rather than a sharp phase
transition. The origin of these preformed pairs is not
fully known. Our view regarding the origin of the PG is,
however, centered around the simple paradigm that PG
corresponds to id-density wave (DDW) ordering [4] at the
antiferromagnetic wave vector Q = (π, π). Starting with
a two-dimensional fermion system on a square lattice de-
scribed by a mean-�eld Hamiltonian involving the sin-
glet DDW order ( i∆k = (i∆0(T )/2) (cos kxa− cos kya))
at the wave vector Q = (π, π), we intend to show that
the �nger-print of the particle�hole asymmetry (PHA)
in the single-particle excitation spectrum of the pure
DDW state is re�ected in the coexisting DDW and DSC
states though the latter is characterized by the Bogo-
liubov quasi-particle bands � a characteristic feature of
SC state. We �nd that one of the necessary conditions for
the coexistence to take place is the �imperfect nesting�.
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2. Theory

In the second-quantized notation, the Hamiltonian to
deal with the DDW order at the antiferromagnetic wave
vector Q = (π, π) plus the d-wave superconductivity can
be expressed as

H =
∑
k, σ

εkd
†
k, σdk, σ +

∑
k, σ

εk+Qd
†
k+Q, σdk+Q, σ

+
∑
k, σ

Dkd
†
k, σdk+Q, σ +

∑
k, σ

D†kd
†
k+Q, σdk, σ

+
∑
k, σ

∆
†(SC)
k d−k,−σdk, σ +

∑
k, σ

∆
(SC)
k d†k, σd

†
−k, σ

− µ
∑
k, σ

(d†k, σdk, σ + d†k+Q, σ, dk+Q, σ), (1)

where Dk = (i∆k) ≡
−
∑
−k′, σ U(k, k′)〈d†

k′ +Q, σ
d−k′, σ〉. The quantity

µ is the chemical potential of the fermion number.
The imaginary d-wave order parameter Dk describ-
ing the PG state breaks the time-reversal symmetry
of the normal state. In (1), dk, σ, with σ = ±1,
corresponds to the fermion annihilation operator for
the single-particle state (k, σ). The DSC gap func-

tion ∆
†(SC)
k ≡

∑
−k′, σ V (k, k′)〈d†−k′, σ

d†−k′,−σ〉 =

−∆†(SC)
k+Q. The conical brackets stand for the thermal

average calculated with the Hamiltonian in (1). This
ensures the self-consistency. The interaction U(k, k′),
with Coulombic origin [4], is of the form U(k,k′) =
|U1|(cos kxa − cos kya)(cos k

′
xa − cos k′ya). Upon substi-

tuting this in Dk = −
∑
−k′, σ U(k, k′)〈d†

k′ +Q, σ
dk′, σ〉,

we obtain the DDW gap equation. The DSC

order parameter ∆
(SC)
k , on the other hand, re-

quires an appropriate attractive interactions
V (k, k′) = −|V1|(cos kxa − cos kya)(cos k

′
xa − cos k′ya),

where V1 is the coupling strength, and the corresponding

(90)
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gap equation is obtained in the similar manner. The
time-reversal invariance of the normal state requires that
the dispersion εk = ε−k. We assume a tight-binding
non-nested dispersion of the form

εk = −2t1 (cos kxa+ cos kya) + 4t2 cos kxa cos kya

− 2t3(cos 2kxa+ cos 2kya) + 4t2, (2)

where, for the hole-doped materials, t2 > 0 (for the
electron-doped materials t2 < 0), and, in all cases,
t2 < t1/2. For example, typical values are t1 ≈ 0.20 eV,
t2/t1 ≈ 0.40, and t3/t1 ≈ 0.01. Upon ignoring the
third neighbor hopping term above, we �nd that the
dispersion typically has two in-equivalent saddle point
van Hove singularities (vHS) at (π, 0) and (0, π) in the
�rst Brillouin zone [5]. Upon assuming that for �llings
such that the Fermi curve lies close to the singularities,
the majority of states participating in the pairing
formation alluded to above will come from regions in the
vicinity of these saddle points. This is the strategy we
have adopted, so that even arbitrarily weak interactions
can produce large e�ects in the physical quantities of
interest via the density-of-states (DOS) or the single-
-particle spectral function A(k, ω). For the pure DDW
case, the spectral function A(k, ω) is given approxi-
mately by a sum of δ functions at the quasi-particle

energies: A(k, ω) = 2π[u2
kδ(ω − ε

(U)
k ) + v2

kδ(ω − ε
(L)
k )]

where the quasi-particle coherence factors (u2
k, v

2
k) are

given by the expressions u2
k = (1/2)[1 + (εLk/wk)],

v2
k = (1/2)[1 − (εLk/wk)]. Here ε

(U,L)
k = [εUk + jwk],

εUk = (ξk + ξk+Q)/2, ε
L
k = (ξk − ξk+Q)/2, ξk = εk − µ,

and wk = [(εLk )
2 + |Dk|2]1/2. The index j is equal to

(±1) with j = +1 corresponding to the upper branch
(U) and j = −1 to the lower branch (L). These
results are the same as those reported by Chakravarty
et al. [4]. In particular, if the dispersion is nested (the
Fermi surface sheets are connected by Q = (π, π)), we

obtain Bogoliubov-like dispersion ε
(U,L)
k = jwk, and

D†k =
∑
k′, σ U(k, k′)(D†k′/2wk′) tanh(βwk′/2) where

β = (kBT )
−1, but the coherence factors u2

k = 1 and
v2
k = 0. This situation manifestly being inadmissible, we
consider a imperfectly nested dispersion as in Eq. (2).
It also demonstrates plainly that one of necessary
conditions for the existence of DDW and the coexistence
of DDW and DSC, etc. is the non-nesting property of
the normal state dispersion.

3. Results and discussion

It is well known [5] that vHSs lead to a logarithmically
diverging DOS. We have plotted the square lattice tight
band DOS in the Hubbard model to show this topological
feature in Fig. 1. There is logarithmic singularity at the
centre and the step-like discontinuities at the band-edges.
The particle�hole symmetry arises if the dispersion is
nested. We �nd that even the non-nested dispersion of
the form (2) in the presence of DDW ordering is unable
to alter the robust divergence feature: the 2D plot of the
dimensionless DOS as a function of energy E expressed in

units of the nearest neighbor hopping t1 (in Fig. 1), cal-
culated with Eqs. (1) and (2) in the pseudo-gap phase at
the doping level ≈ 10%, shows a cusp at E = 0. We have
rendered DOS dimensionless using the same �rst neigh-
bor hopping term. However, as regards the symmetry
feature, the next-nearest-neighbor hopping (t2), which is
known to be important for cuprates [6] and frustrates
the kinetic energy of electrons, leads to the Fermi sur-
face sheets being not connected by Q. This manifests
itself in the form of PHA in our plot in Fig. 1. We shall
show later in Fig. 2 that the signature of this exists in
the form of back-bending (or saturation) momentum of
the dispersion when the PG and SC phases are coexis-
tent in the under-doped regime (the doping level ≤ 10%).
However, when the doping level (≈ 12%) is closer to the
optimal doping [7], the �nger-print appears to be not so
prominent possibly due to fact that the doping beyond
the optimal level yields normal metals with the Fermi
liquid behavior. The signature is an indication of the
interplay of the DDW and DSC states.

Fig. 1. The 2D plot of the dimensionless spectral func-

tion A(E) =
∫ +π

−π d(kxa)/2π
∫ +π

−π (d(kya)/2πA(k, E)t1
as a function of energy E, with a cusp at E = 0. The
numerical values used, in the units of the �rst neighbor
hopping t1 are (µ/t1) = −0.0189 (the DDW ordering
leads to pinning of the Fermi level close to the vHs),

the PG gap amplitude (∆(PG)/t1) = 0.0871, and the SC

gap amplitude (∆(SC)/t1) = 0. The hopping parameters
are (t2/t1) = 0.3925, and (t3/t1) = 0.0005. The nega-
tive energy states by and large correspond to k's close
to Γ -point whereas positive energy states are close to
(±π,±π). We have also plotted the square lattice tight
band DOS in the Hubbard model which clearly shows
vHS at E = 0. The particle�hole symmetry (asymme-
try) in the latter (former) is easy to notice.

If the pairing interaction V (k,k′) is imagined to be
a �probe� applied to the Fermi system in the PG state,

then the gap function ∆
(SC)
k (where ∆

(SC)
k = ∆†k

(SC))
is perhaps a �response� that the system displays. The
structure of the �probe� in momentum space will have
tremendous in�uence on the �response�. For example,
the usual electron�phonon (e�ph) type pairing interac-
tion leads to a fully gapped state � a �conventional� BCS
superconductor. We have assumed here that a combina-
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Fig. 2. The plots of the upper and the lower bands in
the pure DDW state (a) and in the DDW+DSC state
at doping levels 7.98%, 9.94% and 11.92% ((b), (c),
and (d)) shown as a function of momentum (k) along
the antinodal cut (−π, π)�(0, π)�(π, π). (a) The back-
-bending (or saturation) momentum of the dispersion
and the Fermi momentum (kF) are indicated. The
numerical values, in the units of the �rst neighbor
hopping t1 are µ/t1 = −0.0183, the PG gap ampli-

tude ∆(PG)/t1 = 0.0610, and the SC gap amplitude

∆(SC)/t1 = 0. The hopping parameters are t2/t1 =
0.3925, and t3/t1 = 0.0005. (b) There are four quasi-
-particle bands with two positioned at negative energy
and two at positive energy for the Fermi energy taken
as zero. The doping level is 7.98% and the tempera-
ture T = 60 K. The parameter values used are µ/t1 =

−0.0017, the PG gap amplitude ∆(PG)/t1 = 0.023, and

the SC gap amplitude ∆(SC)/t1 = 0.014. The hopping
parameters are t2/t1 = 0.3835, and t3/t1 = 0.0005. The
orderings lead to pinning of the Fermi level close to,
but not precisely at the van Hove singularity. (c) The
nearly constant back-bending (or saturation) momen-
tum (±0.25, π) of the dispersion as in the previous case
is indicated for the doping level 9.94% and the tem-
perature 60 K. The parameter values used are µ/t1 =

−0.0018, the PG gap amplitude ∆(PG)/t1 = 0.024, and

the SC gap amplitude ∆(SC)/t1 = 0.015. The hopping
parameters are t2/t1 = 0.3913, and t3/t1 = 0.0005.
(d) The less prominent back-bending (or saturation)
momentum (±0.15, π) of the dispersion is indicated for
the doping level 11.92% and the temperature 85.8967 K.
The parameter values used are µ/t1 = −0.0054, the PG

gap amplitude ∆(PG)/t1 = 0.0044, and the SC gap am-

plitude ∆(SC)/t1 = 0.0032. The hopping parameters are
t2/t1 = 0.3925, and t3/t1 = 0.0005. The orderings, as
before, lead to pinning of the Fermi level close to, but
not precisely at the van Hove singularity.

Fig. 3. (a) The contour plot of the momentum depen-
dent carrier density in PG+SC state at 9.94% doping
level in the �rst Brillouin zone. The numerical val-
ues, in the units of the �rst neighbor hopping t1 are
µ/t1 = −0.00183, the PG gap amplitude ∆(PG)/t1 =

0.0240, the SC gap amplitude ∆(SC)/t1 = 0.0150, and
the temperature T = 60 K. The hopping parameters
are t2/t1 = 0.39125, and t3/t1 = 0.0005. (b) The con-
tour plot of the momentum dependent carrier density in
PG+SC state at 11.92% doping level in the �rst Bril-
louin zone. The numerical values, in the units of the �rst
neighbor hopping t1 are µ/t1 = −0.0054, the PG gap

amplitude ∆(PG)/t1 = 0.0044, the SC gap amplitude

∆(SC)/t1 = 0.0032, and the temperature T = 85.8967K.
The hopping parameters are t2/t1 = 0.3925, and t3/t1 =
0.0005.

tion of electron�electron and/or electron�bosonic mode

interactions will lead to a d-wave gap ∆
(SC)
k . With

this assumption, we introduce few thermal averages de-

termined by H, viz. Gσ(k, τ) = −〈T (dk,σ(τ)d†k,σ(0))〉,
Γσ(k, τ) = −〈T (d†−k,−σ(τ)d

†
k,σ(0))〉, G

′
σ(k, τ) =

− 〈T (dk+Q,σ(τ)d
†
k,σ(0))〉, and Γ ′σ(k, τ) =

− 〈T (d†−k−Q,−σ(τ)d
†
k,σ(0))〉. Here T is the time-order-

ing operator which arranges other operators from right
to left in the ascending order of imaginary time τ .

The �rst step of our scheme involves the calculation
of imaginary time evolution of the operators dk,σ(τ).
As the next step, using the evolution, we obtain the
equations of motion of the averages. The �nal step is
the calculation of the Fourier coe�cients of these tem-
perature Green functions. The poles of the Fourier
coe�cients yields the single particle excitation spectra
Ek(T < Tc). We �nd that Ek(T < Tc) = ±E(U,L)(k),

where E
(U,L)2
k =

(
1
2

)
[(ξ2
k + ξ2

k+Q + 2Deff(k)
2) ± p(k)],

ξk = εk − µ, D2
eff(k) = (∆2

k + ∆
(SC)2
k ) and p(k) =

[(ξ2
k−ξ2

k+Q)
2+4∆2

k(ξk+ξk+Q)
2]1/2. The quasi-particle

excitations in cuprates, thus, have two gaps in the spec-
trum that are distinct and do not merge strictly into

one �quadrature� gap (Deff(k)
2 = [∆2

k + ∆
(SC)2
k ]) if

the nesting property, εk = −εk+Q, of the dispersion
is absent. For the near-nested situation we do obtain
such a merger yielding Ek ≈ [ξ2

k + Deff(k)
2]1/2. The

two gaps in the excitation spectrum are then deter-
mined by the 1 ≈ U1

∑
k[(cos kxa − cos kya)

2 × {ξ2
k +

(∆
(PG)
0 (0)2 + ∆

(SC)
0 (0)2)(cos kxa − cos kya)

2}−1/2] and
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∆
(SC)
k ≈ −(1/2)

∑
k′,σ V (k,k′)∆

(SC)
k′ /

√
ξ2
k′ +Deff(k

′)2.

The latter one is similar to the weak couplingBCS gap
equation in the zero-temperature limit. Together with
the equation to determine µ applying Luttinger theo-
rem [8], the equations have been solved simultaneously.
For the doping level 9.94% and temperatures T = 60 K
and 20 K, for instance, we have found (µ/t1 = −0.0018,
∆

(PG)
0 /t1 = 0.0240, ∆

(SC)
0 /t1 = 0.0150), and (µ/t1 =

−0.0009, ∆(PG)
0 /t1 = 0.0170, ∆

(SC)
0 /t1 = 0.0294), respec-

tively, for ((t2/t1) ≈ 0.4, (t3/t1) = 0.0005). For the dop-
ing level 11.92% and temperatures T = 85.9 K, however,

we have found (µ/t1 = −0.0054, ∆
(PG)
0 /t1 = 0.0044,

∆
(SC)
0 /t1 = 0.0032), for ((t2/t1) = 0.3925, (t3/t1) =

0.0005).
The exercise above leads to the graphical representa-

tions of ±E(U,L) (k) in the co-existent DDW and DSC
states. Before that, in Fig. 3 we have shown the con-
tour plots of the momentum dependent carrier density in
PG+SC state at 9.94% and 11.92% doping levels in the
�rst Brillouin zone. In Fig. 2a we have shown the plot
of single-particle excitation spectrum in the pure DDW
phase (for the reference purpose) while in 3b�d the plots
of ±E(U,L)(k), along the antinodal cut (−π, π)�(0, π)�
(π, π). In Fig. 2a, we �nd easy-to-notice PHA, as the
upper band is parabolic while the lower band is charac-
terized by dip at (0, π), and the so-called back-bending
momentum at (−0.45, π) and (0.45, π). In Fig. 2b�d,

the bands (−E(U,L)
k ) below the Fermi energy are the re-

�ected ones of those (E
(U,L)
k ) above the Fermi energy.

The shoulder-type feature of the dispersion −E(L)
k , in-

dicated by double-headed arrows, also exists in the ex-
perimental data [9]. The interplay of DDW and DSC is

manifested by the fact that the band (−E(L)
k ) no more

peak at kF(0, π) but rather at the back-bending momen-
tum position as shown in Fig. 2b�d. We conclude that
the Bogoliubov quasi-particle band features observed in
the superconducting state here are consistent with the
ARPES experiments [9, 10].
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