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The method of complex geometrical optics is presented, which describes Gaussian beam di�raction and self-
-focusing in smoothly inhomogeneous and nonlinear saturable media of cylindrical symmetry. Complex geometrical
optics reduces the problem of Gaussian beam di�raction and self-focusing in inhomogeneous and nonlinear media
to the system of the �rst order ordinary di�erential equations for the complex curvature of the wave front and for
Gaussian beam amplitude, which can be readily solved both analytically and numerically. As a result, complex
geometrical optics radically simpli�es the description of Gaussian beam di�raction and self-focusing e�ects as
compared to the other methods of nonlinear optics such as: variational method approach, method of moments,
and beam propagation method. The power of complex geometrical optics method is presented on the example of
Gaussian beam width evolution in saturable �bre with either focusing and defocusing refractive pro�les. Besides,
the in�uence of initial curvature of the wave front on Gaussian beam evolution in nonlinear saturable medium is
discussed in this paper.
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1. Introduction

Complex geometrical optics (CGO) has two equivalent
forms: the ray-based form, which deals with complex rays
[1�6], that is with trajectories in a complex space, and the
eikonal-based form, which uses complex eikonal instead
of complex rays [6, 7]. A surprising feature of CGO is
its ability to describe Gaussian beam (GB) di�raction in
both ray-based and eikonal-based approaches. Recently,
CGO method has been applied to describe GB evolution
in inhomogeneous media [8, 9] and nonlinear media of
the Kerr type [10] including nonlinear �bres [11].

This paper describes the advantages of the eikonal-
-based form of CGO method for description of Gaus-
sian beam di�raction and self-focusing in nonlinear sat-
urable media with special attention to the in�uence of
refractive pro�le and initial wave front curvature. First
of all CGO is new method among commonly accepted
approaches based on parabolic equation [12�15]. From
practical point of view this paper models the light prop-
agation in nonlinear saturable �bres and generalizes the
results of previous papers [16�20], where authors consid-
ered mainly the light beam propagation in nonlinear me-
dia without contribution of the linear refraction and the
e�ect of initial wave front curvature. Section 2 presents
the basic equations of CGO method. Generalization of
CGO for arbitrary nonlinear media beyond the Kerr type
one is presented in Sect. 3. Section 4 outlines the ability
of CGO method to describe GB propagation in nonlinear
saturable �bre, where the in�uence of initial curvature of
the wave front and �ber refractive pro�le on GB propa-
gation is discussed. Finally, Sect. 5 formulates conditions
for uniform waveguide with minimum radius taking into
account either focusing and defocusing refraction.

2. Basic equations of CGO

2.1. Riccati equation for complex parameter B

For axially symmetric wave beam propagating along
z direction in axially symmetric medium CGO method
suggests solution of the form

u(ζ, z) = A exp (ik0ψ)

= A(z) exp
(
ik0
(√
ε0z +B(z)ζ2/2

))
, (1)

where u = u(ζ, z) is wave function of the beam, A = A(z)
is complex amplitude, k0 = 2π/λ0, where λ0 is the wave-
length of the beam in vacuum and ψ is complex-valued
eikonal, which in accordance with (1) has the form

ψ =
√
ε0z +B(z)ζ2/2, (2)

where ζ =
√
x2 + y2 is the distance from the �bre axis z.

In above equation B is the complex curvature of the wave
front [10] and ε0 is permittivity of the medium measured
along z axis. We assume that parameter ε0 is constant
along z axis. The real and imaginary parts of parameter
B = BR + iBI determine the real curvature of the wave
front κ and the beam width w (1/e point of the wave
intensity) correspondingly

BR = κ, BI =
1

k0w2
. (3)

The eikonal equation

(∇ψ)2 = ε (4)

in (ζ, z) coordinates takes the form(
∂ψ

∂ζ

)2

+

(
∂ψ

∂z

)2

= ε(z, ζ). (5)

In accordance with paraxial approximation radius ζ
should be small enough. Therefore parameter ε(z, ζ) in
Eq. (5) can be expanded in the Taylor series in ζ in the
vicinity of symmetry axis z, obtaining this way the ex-
pression

(56)
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ε(z, ζ) = ε(ζ = 0) +

(
∂ε

∂ζ

∣∣∣
ζ=0

)
ζ +

(
∂2ε

∂ζ2

∣∣∣
ζ=0

)
ζ2

2
.

(6)

Substituting (2) and (6) into eikonal Eq. (5) and com-
paring coe�cients of ζ0, ζ and ζ2 we obtain relations

ε(ζ = 0) = ε0,
∂ε

∂ζ

∣∣∣
ζ=0

= 0 (7)

and the Riccati equation for complex curvature B:

√
ε0

dB

dz
+B2 = γ. (8)

Parameter γ for axially symmetric medium equals

γ =
1

2

∂2ε

∂ζ2

∣∣∣
ζ=0

. (9)

Substituting (3) into Eq. (1), we obtain the Gaussian
beam of the form

u(ζ, z) = A(z) exp

(
− ζ2

2w2

)
× exp

(
ik0

(
√
ε0z + κ

ζ2

2

))
. (10)

Solution (10) re�ects the general feature of CGO, which
in fact deals with the Gaussian beams.

2.2. The equation for GB complex amplitude

In the framework of paraxial approximation the am-
plitude A = A(z) is complex-valued within CGO method
and satis�es the transport equation

div(A2gradψ) = 0, (11)

which for axially symmetric beam in (ζ, z) coordinates
takes the following form:

dA2

dz

∂ψ

∂z
+

[
1

ζ

∂

∂ζ

(
ζ
∂ψ

∂ζ

)
+
∂2ψ

∂z2

]
A2 = 0. (12)

In accordance with Eq. (2), assuming that ζ is small pa-
rameter and assuming that �rst derivative dB

dz is limited

we obtain that 1
2

dB
dz ζ

2 � √ε0. Based on above assump-
tion we obtain that

∂ψ

∂z
∼=
√
ε0,

1

ζ

∂

∂ζ

(
ζ
∂ψ

∂ζ

)
= 2B and

∂2ψ

∂z2
∼= 0. (13)

As a result Eq. (12) reduces to the ordinary di�erential
equation in the form

√
ε0

dA

dz
+BA = 0. (14)

The above equation for GB complex amplitude (14), as
well as the Riccati equation for complex curvature B (8)
are the basic CGO equations. CGO reduces the problem
of GB di�raction to the domain of ordinary di�erential
equations. Having calculated the complex parameter B
from Riccati Eq. (8), one can readily determine complex
amplitude A by integration of Eq. (14). As a result the
complex amplitude of cylindrically symmetric GB takes
the form

A (z′) = A0 exp

(
−
∫ z′

0

B (z′) dz′

)
, (15)

where A0 = A(0) is an initial amplitude and z′ = z/
√
ε0.

2.3. The equation for GB width evolution

Riccati Eq. (8) is equivalent to the set of two equations
for the real and imaginary parts of the complex curva-
ture B:{ √

ε0
dBR

dz +B2
R −B2

I = γ,
√
ε0

dBI

dz + 2BRBI = 0.
(16)

Substituting (3) into (16), we obtain the expression

√
ε0

d

dz

(
1

w2

)
= − 2κ

w2
, (17)

which leads to the known relation between the beam
width w and the wave front curvature κ in the form [12]:

κ =
√
ε0

1

w

dw

dz
. (18)

Substituting now relation (18) into the �rst equation of
the system (16), we obtain the ordinary di�erential equa-
tion of the second order for GB width evolution

ε0
d2w

dz2
− γw =

1

k20w
3
. (19)

3. CGO of inhomogeneous and arbitrary

nonlinear media

In this section, the CGO method is applied for beam
propagation in inhomogeneous and cylindrically symmet-
ric nonlinear medium with permittivity pro�le of the
form

ε = εLIN + εNLgI(I), (20)

where εNL is nonlinear coe�cient. Introducing the pa-
rameter of characteristic inhomogeneity scale L we can
present linear part of the medium permittivity as equal to

εLIN = ε0 ±
ζ2

L2
. (21)

In Eq. (20) gI is an arbitrary function of the beam inten-
sity I = c

4πuu
∗ and ζ is a distance from the �bre axis.

The beam intensity for wave function in Eq. (1) taking
into account also Eq. (3) takes the form

I =
c

4π
|A(z)|2 exp

(
− ζ2

2w2

)
. (22)

One can notice that

ε(ζ = 0) = εLIN(ζ = 0) + εNLgI[I]ζ=0

= ε0 + εNLgI

[ c
4π
|A(z)|2

]
. (23)

In accordance with CGO method boundary applica-
bility [9, 10] the following condition must be satis�ed
εNLgI

[
c
4π |A(z)|

2
]
� ε0 and resulting in �rst condition in

Eq. (7) is satis�ed. One can notice that �rst derivative

∂ε

∂ζ
=
∂εLIN
∂ζ

− εNL
dgI
dI

c

4πw2
|A(z)|2 exp

(
− ζ2

2w2

)
ζ

(24)

is equal to zero when ζ = 0. Thus, the second condition
in Eq. (7) is also satis�ed. The characteristic inhomo-
geneity scale of the �bre mentioned above is related with
�bre core radius rc by the relation L = rc/δ, where δ is
the di�erence of the constant refractive indexes between



58 P. Berczynski

core and cladding and ε0 is permittivity along symme-
try axis. In Eq. (21) positive sign in the expression cor-
responds to linear defocusing refraction whereas nega-
tive sign describes focusing inhomogeneity of the �bre.
For the permittivity in Eq. (20) and Eq. (21) the Riccati
Eq. (8) can be presented as

dB

dz′
+B2 = γLIN + γNL, (25)

and equation for GB width evolution takes the following
form:

d2w

dz′2
− (γLIN + γNL)w =

1

k20w
3
, (26)

where

γLIN =
1

2

∂2εLIN
∂ζ2

|ζ=0 = ± 1

L2
(27)

and

γNL =
εNL

2

[
d2gI
dI2

(
∂I

∂ζ

)2

+
dgI
dI

∂2I

∂ζ2

] ∣∣∣∣
ζ=0

. (28)

4. Solutions for GB propagation in saturable

nonlinear �bres

Let us consider now axially symmetric medium with
the permittivity

ε = ε0 ±
ζ2

L2
+

εNLI

1 + εNLI/εs
, (29)

where εs denotes saturating permittivity. The permittiv-
ity pro�le in Eq. (29) models nonlinear optical �bres [20],
which for low intensities I → 0 has the Kerr type pro�le

ε = ε0 ±
ζ2

L2
+ εNLI (30)

and which saturates for I →∞, resulting in

ε = ε0 ±
ζ2

L2
+ εs. (31)

For permittivity in Eq. (29) Riccati equation and equa-
tion for GB width evolution take the form

dB

dz′
+B2 = ± 1

L2
− εNL |A0|2 w2

0(
w2 + εNL |A0|2 w2

0/εs

)2 , (32)

d2w

dz′2
+

εNL |A0|2 w2
0w(

w2 + εNL |A0|2 w2
0/εs

)2 ± w

L2
=

1

k20w
3
. (33)

Introducing next dimensionless width of GB f = w/w0,
Eq. (33) can be presented in the form

d2f

dz′2
+

εNL |A0|2 f
w2

0 (f
2 + p)

2 ±
f

L2
=

1

L2
Df

3
, (34)

where LD = k0w
2
0 is di�raction distance and p =

εNL|A0|2/εs is nonlinear parameter, which is a measure
of the value of nonlinear part of �bre permittivity rela-
tive to saturating one. The �rst integral of Eq. (34) takes
the form

1

2

(
df

dz′

)2

− εNL |A0|2

2w2
0 (f

2 + p)
± f2

2L2
+

1

2L2
Df

2
= C. (35)

In accordance with Eq. (18) the value df/dz′ at z′ = 0

presents the squared initial wave front curvature(
df

dz′

)2 ∣∣∣
z′=0

=
1

w2(0)

(
dw

dz′

)2 ∣∣∣
z′=0

= κ20. (36)

Thus Eq. (35) takes the following form:

f2
(

df

dz′

)2

− εNL |A0|2 f2

w2
0 (f

2 + p)
± f4

L2
+

1

L2
D

=

(
κ20 −

εNL |A0|2

w2
0(1 + p)

± 1

L2
+

1

L2
D

)
f2. (37)

Taking advantage of di�erential relation [(f2)′]2 = 4f2f ′2

to above equation, where F = f2, one obtains

1

4

(
dF

dz′

)2

− εNL |A0|2 F
w2

0(F + p)
± F 2

L2
+

1

L2
D

=

(
κ20 −

εNL |A0|2

w2
0(1 + p)

± 1

L2
+

1

L2
D

)
F (38)

and di�erentiating once Eq. (38) we obtain mathemat-
ically simple equation which is useful especially for nu-
merical simulations and has the form

d2F

dz′2
− 2εNL |A0|2 p
w2

0(F + p)2
± 4F

L2

= 2

(
κ20 −

εNL |A0|2

w2
0(1 + p)

± 1

L2
+

1

L2
D

)
. (39)

When εNL|A0|2 � εs, then p is small parameter (p→ 0)
and as a result the above Eq. (39) reduces to the form

d2F

dz′2
± 4F

L2
= 2

(
κ20 −

εNL |A0|2

w2
0

± 1

L2
+

1

L2
D

)
. (40)

Noticing next that parameter w2
0/εNL|A0|2 denotes non-

linear length LNL, above Eq. (40) has the following ana-
lytical solution for the case of nonlinear Kerr type �bre
with linear defocusing refractive pro�le described by the
factors −4F/L2 and −1/L2 in Eq. (40)

f2 = cosh2
(
z′

L

)
+

(
κ20L

2 − L2

L2
NL

+
L2

L2
D

)
sinh2

(
z′

L

)
+ κ0L sinh

(
2z′

L

)
. (41)

For the nonlinear self-focusing �bre with focusing linear
refractive pro�le (the positive factors 4F/L2 and 1/L2 in
Eq. (40)) the solution has the form

f2 = cos2
(
z′

L

)
+

(
κ20L

2 − L2

L2
NL

+
L2

L2
D

)
sin2

(
z′

L

)
+ κ0L sin

(
2z′

L

)
. (42)

Numerical analysis of Eq. (39), beyond the case p → 0
shows that for focusing permittivity pro�le, assuming
that κ0 = 0 we obtain three types of solutions presented
in Fig. 1: oscillatory self-focusing (trace 1), stationary
solution (trace 2) and oscillatory di�racting (trace 3).

In Fig. 2 it is shown that due to the presence of linear
defocusing refraction the new type of solution appears
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Fig. 1. Numerical solutions of Eq. (39) for the focusing
refraction and parameters w0 = 10λ, εNL|A0|2 = 0.0001,
p = 10−4 and trace 1: L = 0.3LD, trace 2: L = 1.285LD,
trace 3: L = 2LD.

Fig. 2. Numerical solutions of Eq. (39) for the defo-
cusing refraction and parameters w0 = 10λ, εNL|A0|2 =
0.001, p = 10−3 and L = 0.1LD and trace 1: κ0 = 2/LD,
trace 2: κ0 = 0, trace 3: κ0 = −2/LD.

where GB width increases monotonously and di�raction
widening process is enhanced by linear defocusing refrac-
tive pro�le.

In Fig. 3 we notice that increase of total beam power
makes that self-focusing e�ect becomes strong enough to
overcome di�raction widening and linear defocusing pro-
cesses. As a result GB width oscillates though initially
dominates di�raction widening and defocusing refraction
e�ect.

In Fig. 2 and Fig. 3 the in�uence of initial wave front
curvature on GB width evolution is depicted. One can
notice that when the initial wave front curvature is neg-
ative κ0 < 0, the GB width �rst decreases approaching
to minimum value and for the positive value of this pa-
rameter the GB width at once increases.

Fig. 3. Numerical solutions of Eq. (39) for the defo-
cusing refraction and parameters w0 = 10λ, εNL|A0|2 =
0.01, p = 10−2 and L = 0.3LD and trace 1: κ0 = 5/LD,
trace 2: κ0 = 0, trace 3: κ0 = −5/LD.

5. Conditions for uniform waveguide

in the presence of linear refraction

Demanding for the beam to propagate as a stationary
mode when F = f2 = 1 and κ0 = 0, Eq. (39) takes the
form

−2εNL |A0|2 p
w2

0(1 + p)2
± 4

L2
= 2

(
1

L2
D

− εNL |A0|2

w2
0(1 + p)

± 1

L2

)
.

(43)

After simple modi�cations we obtain the expression

W 2 =
1

p
(1+p)2 ±

w2
0

εsL2

, (44)

whereW 2 = εs4π
2w2

0/λ
2 denotes dimensionless radius of

the waveguide. The parameter W depends on nonlinear
parameter p which is shown for di�erent values of �bre
inhomogeneity scale L and di�erent initial beam widths
w0 in Fig. 4.
In Fig. 5 it is shown how dimensionless radius of the

waveguide depends on �bre inhomogeneity scale L for dif-
ferent values of nonlinear parameter p in the case of linear
focusing refraction and in Fig. 6 in the presence of linear
defocusing refraction. One can notice that radius of the
waveguide is minimum Wmin when the parameter p is
equal to unity p = 1. It takes place when εNL|A0|2 = εs.
As a result Wmin takes the form

Wmin = 2
/√

1± 4w2
0

εsL2
. (45)

One can notice that when the contribution of linear re-
fraction is insigni�cant, then the minimum radius of the
waveguide approaches to constant value Wmin(L → ∞)
= 2. In the case of focusing refraction (positive sign
in Eq. (44)) the minimum radius of the waveguide be-
comes smaller comparing to the case Wmin(L→∞) = 2.
In the case of defocusing linear process (negative sign in
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Fig. 4. Dependence of the dimensionless radius of the
waveguide W on nonlinear parameter p in the case of
linear focusing refraction for parameters: w2

0/εsL
2 =

1/32 (trace 1), w2
0/εsL

2 = 1/16 (trace 2), w2
0/εsL

2 =
1/8 (trace 3).

Fig. 5. Dependence of the dimensionless radius of the
waveguide W on �bre inhomogeneity scale L in the
case of linear focusing refraction for the parameters
k20w

2
0/εs = 2 and p = 1 (trace 1), k20w

2
0/εs = 2 and

p = 2 (trace 2), k20w
2
0/εs = 2 and p = 3 (trace 3).

Eq. (44)) this radiusW becomes greater thanWmin(L→
∞) = 2.
In Fig. 5 one can notice that for the focusing refraction

the dimensionless radius of the waveguideW increases for
small values of inhomogeneity scale and next approaches
to constant value. In Fig. 6 one can distinguish that for
the defocusing refraction the dimensionless radius of the
waveguide W initially decreases and becomes constant,
when the parameter L becomes greater. Let us calcu-

Fig. 6. Dependence of the dimensionless radius of the
waveguideW on �bre inhomogeneity scale L in the case
of defocusing refraction for the parameters k20w

2
0/εs =

1/2 and p = 1 (trace 1), k20w
2
0/εs = 1 and p = 2

(trace 2), k20w
2
0/εs = 2 and p = 3 (trace 3).

late also the power of the beam in uniform waveguide.
One can notice that standard form of total beam power
is equal to [10]:

P =
1

8
c
√
ε0w

2
0 |A0|2 . (46)

Taking into account the de�nitions of nonlinear parame-
ter p = εNL|A0|2/εs and dimensionless radius of the wave-
guide W 2 = εs4π

2w2
0/λ

2, we can calculate the power of
the beam in uniform waveguide PUW, which is equal to

PUW =
c
√
ε0λ

2W 2p

32π2εNL
. (47)

6. Conclusion

The paper applies the method of CGO to the analy-
sis of the GB evolution in smoothly inhomogeneous and
nonlinear saturable media of cylindrical symmetry. The
CGO method reduces di�raction and self-focusing prob-
lems for the Gaussian beam to a solution of ordinary
di�erential equations, describing behaviour of the ampli-
tude, the beam width, and the curvature of the wave
front. CGO method readily provides a solution for in-
homogeneous nonlinear saturable �bre in a simpler way
than the standard methods of nonlinear optics such as:
the variation method approach, method of moments and
beam propagation method. Following analogously like in
papers [16�20] we model the light propagation in non-
linear �bres by Gaussian beam, which is self-sustained
solution within CGO method. Besides simplicity and af-
fectivity CGO method supplies a number of new results.
Firstly, it is shown in the paper how focusing/defocus-

ing refraction in�uences on GB width evolution in non-
linear saturable �bre.
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Secondly, it is presented that the CGO method e�ec-
tively describes joint in�uence of the refractive index pro-
�le and the initial curvature of the wave front.
It is also shown how linear refraction in�uences on the

conditions of formation of the stationary mode and con-
ditions for minimum radius of the waveguide. This way
CGO method demonstrates high ability in further appli-
cations of nonlinear graded-index optics in both experi-
mental and theoretical problems.
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