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The method of complex geometrical optics is presented, which describes Gaussian beam diffraction and self-
-focusing in smoothly inhomogeneous and nonlinear saturable media of cylindrical symmetry. Complex geometrical
optics reduces the problem of Gaussian beam diffraction and self-focusing in inhomogeneous and nonlinear media
to the system of the first order ordinary differential equations for the complex curvature of the wave front and for
Gaussian beam amplitude, which can be readily solved both analytically and numerically. As a result, complex
geometrical optics radically simplifies the description of Gaussian beam diffraction and self-focusing effects as
compared to the other methods of nonlinear optics such as: variational method approach, method of moments,
and beam propagation method. The power of complex geometrical optics method is presented on the example of
Gaussian beam width evolution in saturable fibre with either focusing and defocusing refractive profiles. Besides,
the influence of initial curvature of the wave front on Gaussian beam evolution in nonlinear saturable medium is
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discussed in this paper.
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1. Introduction

Complex geometrical optics (CGO) has two equivalent
forms: the ray-based form, which deals with complex rays
[1-6], that is with trajectories in a complex space, and the
eikonal-based form, which uses complex eikonal instead
of complex rays [6, 7]. A surprising feature of CGO is
its ability to describe Gaussian beam (GB) diffraction in
both ray-based and eikonal-based approaches. Recently,
CGO method has been applied to describe GB evolution
in inhomogeneous media [8, 9] and nonlinear media of
the Kerr type [10] including nonlinear fibres [11].

This paper describes the advantages of the eikonal-
-based form of CGO method for description of Gaus-
sian beam diffraction and self-focusing in nonlinear sat-
urable media with special attention to the influence of
refractive profile and initial wave front curvature. First
of all CGO is new method among commonly accepted
approaches based on parabolic equation [12-15]. From
practical point of view this paper models the light prop-
agation in nonlinear saturable fibres and generalizes the
results of previous papers [16-20], where authors consid-
ered mainly the light beam propagation in nonlinear me-
dia without contribution of the linear refraction and the
effect of initial wave front curvature. Section 2 presents
the basic equations of CGO method. Generalization of
CGO for arbitrary nonlinear media beyond the Kerr type
one is presented in Sect. 3. Section 4 outlines the ability
of CGO method to describe GB propagation in nonlinear
saturable fibre, where the influence of initial curvature of
the wave front and fiber refractive profile on GB propa-
gation is discussed. Finally, Sect. 5 formulates conditions
for uniform waveguide with minimum radius taking into
account either focusing and defocusing refraction.

2. Basic equations of CGO

2.1. Riccati equation for complex parameter B

For axially symmetric wave beam propagating along
z direction in axially symmetric medium CGO method
suggests solution of the form

u(C, z) = Aexp (ikot)
= A(2) exp (iko (vEoz + B(2)¢*/2)) , (1)

where u = u((, z) is wave function of the beam, A = A(2)
is complex amplitude, kg = 27/Ag, where g is the wave-
length of the beam in vacuum and % is complex-valued
eikonal, which in accordance with (1) has the form

¥ = Veoz + B(2)¢?/2, (2)
where ¢ = /22 + 42 is the distance from the fibre axis z.
In above equation B is the complex curvature of the wave
front [10] and €q is permittivity of the medium measured
along z axis. We assume that parameter ¢ is constant
along z axis. The real and imaginary parts of parameter
B = Bgr + iBj determine the real curvature of the wave
front x and the beam width w (1/e point of the wave
intensity) correspondingly

1
Bgr = B = —. 3
=k Bi= @
The eikonal equation
(Ve)* =e )

in (¢, z) coordinates takes the form

(5" (2) -0

oC 0z
In accordance with paraxial approximation radius (
should be small enough. Therefore parameter £(z,() in
Eq. (5) can be expanded in the Taylor series in ¢ in the
vicinity of symmetry axis z, obtaining this way the ex-
pression
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Oe 8% ¢?
£(2,¢) =e((=0)+ <8C C—O) ¢+ (aCQL_O) 5(6)
Substituting (2) and (6) into eikonal Eq. (5) and com-
paring coefficients of (%, ¢ and ¢? we obtain relations

Oe
cC=0 =20, 3| _ = 7
and the Riccati equation for complex curvature B:
Veo i—f + B? = . (8)
Parameter ~ for axially symmetric medium equals
1 0% ‘ )
773 02 le=0"

Substituting (3) into Eq. (1), we obtain the Gaussian
beam of the form

<2

W>

u6.2) = Az exp (-
CQ
X exp (iko (ﬁz + m2>> . (10)
Solution (10) reflects the general feature of CGO, which
in fact deals with the Gaussian beams.

2.2. The equation for GB complex amplitude

In the framework of paraxial approximation the am-
plitude A = A(z) is complex-valued within CGO method
and satisfies the transport equation

div(A?grads)) = 0, (11)
which for axially symmetric beam in ({, z) coordinates
takes the following form:

dA? oy W) 0%

_— —— | A2 =0. 12
i ot Lo (5 ) H ) =0

In accordance with Eq. (2), assuming that ¢ is small pa-

rameter and assuming that first derivative ?Tz is limited

we obtain that é fi]f ¢? <« /2. Based on above assump-

tion we obtain that

N 19 (.0 %Y

5 =V 48C<<8C)_QB nd = 0. (13)
As a result Eq. (12) reduces to the ordinary differential
equation in the form

dA

Veo 0o + BA=0. (14)
The above equation for GB complex amplitude (14), as
well as the Riccati equation for complex curvature B (8)
are the basic CGO equations. CGO reduces the problem
of GB diffraction to the domain of ordinary differential
equations. Having calculated the complex parameter B
from Riccati Eq. (8), one can readily determine complex
amplitude A by integration of Eq. (14). As a result the
complex amplitude of cylindrically symmetric GB takes

the form
dz’) , (15)

A(Z') = Agexp (— /OZ B(%

where Ay = A(0) is an initial amplitude and 2’ = z/,/gq.

2.3. The equation for GB width evolution

Riccati Eq. (8) is equivalent to the set of two equations
for the real and imaginary parts of the complex curva-
ture B:

ﬁdBR +B2 _BQ =7,
0481 + 2Br By = 0.
Substltutlng (3) into (16), we obtain the expression
d /1 2K
—(=)=_= 17
Vo (w) - (17)
which leads to the known relation between the beam

width w and the wave front curvature x in the form [12]:

1 dw

= —_— 18
w Eow dz (18)

Substituting now relation (18) into the first equation of
the system (16), we obtain the ordinary differential equa-
tion of the second order for GB width evolution
dw 1
Coqr W= W.

(16)

(19)

3. CGO of inhomogeneous and arbitrary
nonlinear media

In this section, the CGO method is applied for beam
propagation in inhomogeneous and cylindrically symmet-
ric nonlinear medium with permittivity profile of the
form

€ = eLN +enngr(l), (20)
where enp, is nonlinear coefficient. Introducing the pa-
rameter of characteristic inhomogeneity scale L we can
present linear part of the medium permittivity as equal to
<2
2
In Eq. (20) gy is an arbitrary function of the beam inten-
sity I = Fuu* and ( is a distance from the fibre axis.
The beam intensity for wave function in Eq. (1) taking
into account also Eq. (3) takes the form

_ iﬁ |A(2)| exp (—Cz) : (22)

One can notice that
e(¢ =0) = eLin(¢ = 0) +envrgi[T]¢c=o

c
= co+ et | = 1A - (23)
In accordance with CGO method boundary applica-
bility [9, 10] the following condition must be satisfied
envLgr | 1=|A(2)|?] < o and resulting in first condition in
Eq. (7) is satisfied. One can notice that first derivative

% . 8€L1N _ ng & 2 <2
o~ oc AL a2 A ( ¢

ELIN = €9 £ == (21)

(24)
is equal to zero when ¢ = 0. Thus, the second condition
in Eq. (7) is also satisfied. The characteristic inhomo-
geneity scale of the fibre mentioned above is related with
fibre core radius r. by the relation L = r./d, where ¢ is
the difference of the constant refractive indexes between
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core and cladding and ¢( is permittivity along symme-
try axis. In Eq. (21) positive sign in the expression cor-
responds to linear defocusing refraction whereas nega-
tive sign describes focusing inhomogeneity of the fibre.
For the permittivity in Eq. (20) and Eq. (21) the Riccati
Eq. (8) can be presented as

dB

T + B = LN + L (25)
and equation for GB width evolution takes the following
form:

d?w 1

— (LN + L) w (26)

REE =
where
2
YLIN = %a;%k:o = i% (27)
and
ent, | d2g1 [ O1 2 dgr 021
INL = 5~ [dIQ (8() (ﬂ@@} ‘ (28)

4. Solutions for GB propagation in saturable
nonlinear fibres

Let us consider now axially symmetric medium with
the permittivity

CQ 6NLI

L2 + 1+entd/es’ (29)

where €4 denotes saturating permittivity. The permittiv-

ity profile in Eq. (29) models nonlinear optical fibres [20],

which for low intensities I — 0 has the Kerr type profile
2

E=¢0*t =

e=¢g+ > 2t ent.t (30)
and which saturates for I — oo, resulting in
2
E—Eoi%—l—&s (31)

For permittivity in Eq. (29) Riccati equation and equa-
tion for GB width evolution take the form

dB 1 ENL |A0|2w2

@JFB?:iﬁ— 20 5. (32)
(’11)2 + ENL |A0| w%/ss)

de ENL |A0| wow ﬂ o 1 (33)

dz"? L2 kwd’

2
<w2 —+ ENL ‘A0| wO/€S>

Introducing next dimensionless width of GB f = w/wo,
Eq. (33) can be presented in the form

d? Aol? 1
Lol ] Lo e

=7 " wE (P rp)’ L7 LRS
where Lp = kow? is diffraction distance and p =

6NL|A0\2 /&s is nonlinear parameter, which is a measure
of the value of nonlinear part of fibre permittivity rela-
tive to saturating one. The first integral of Eq. (34) takes

the form
df enc|Aof* | f2 1
dz' ) 2wl (f%+p) 2L2 2L% f?
In accordance with Eq. (18) the value df/dz" at 2/ =0

— C. (35)

presents the squared initial wave front curvature

df\? 1 (dw\?® )
(dz’) 2=0 w2(0) (dz’) oo O (36)
Thus Eq. (35) takes the following form:
72 df ene|Aof* S AR
TWR (P L2 L%
2
o env|Aol” | 1 2
= —_—m—m j: —_— [E—

Taking advantage of differential relation [(f2)12 =4f2f"?
to above equation, where F' = f2, one obtains
LOAPY' _ew|AfF P21
dz’ wi(F+p) — L2 L}

2
2 ENL |A0| 1 1
= -+ =4+ = | F 38
(“0 Wty I2 I3 (38)
and differentiating once Eq. (38) we obtain mathemat-
ically simple equation which is useful especially for nu-

merical simulations and has the form
d2F 2€NL |A0| p 4F

dz?  wi(F+p)? L2
ENL |A0|2 1 1
=2 k2 - i . 39
<“° W(tp) 2T L% (39)

When enp,|Ag|? < &g, then p is small parameter (p — 0)
and as a result the above Eq. (39) reduces to the form

?F | 4F ext|4o” | 1 1

dz’2iL2:2<Hg_u|;§0|iL2+LQ>' (40)
Noticing next that parameter w3 /exy,|Ao|? denotes non-
linear length Ly, above Eq. (40) has the following ana-
lytical solution for the case of nonlinear Kerr type fibre
with linear defocusing refractive profile described by the
factors —4F/L? and —1/L? in Eq. (40)

/ I 2
2 — ‘h2 < 2L2 _ L h2
! o8 L + L% + L2 St L

2 /
+ koL sinh (;) . (41)

For the nonlinear self-focusing fibre with focusing linear
refractive profile (the positive factors 4F/L? and 1/L? in
Eq. (40)) the solution has the form

2 L? L? 2!
f? = cos? (> < 2L2 - —+ ) sin? <)
L L%, LQD L

2 !/
+ koL sin (;) . (42)

Numerical analysis of Eq. (39), beyond the case p — 0
shows that for focusing permittivity profile, assuming
that ko = 0 we obtain three types of solutions presented
in Fig. 1: oscillatory self-focusing (trace 1), stationary
solution (trace 2) and oscillatory diffracting (trace 3).

In Fig. 2 it is shown that due to the presence of linear
defocusing refraction the new type of solution appears
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Fig. 1. Numerical solutions of Eq. (39) for the focusing
refraction and parameters wo = 10\, enr.|Ao|? = 0.0001,
p=10"*and trace 1: L = 0.3Lp, trace 2: L = 1.285Lp,
trace 3: L = 2Lp.
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Fig. 2.
cusing refraction and parameters wo = 10\, ent.|Ao
0.001, p=10"%and L = 0.1Lp and trace 1: xo = 2/Lp,
trace 2: ko = 0, trace 3: ko = —2/Lp.

Numerical solutions of Eq. (39) for the defo-
=

where GB width increases monotonously and diffraction
widening process is enhanced by linear defocusing refrac-
tive profile.

In Fig. 3 we notice that increase of total beam power
makes that self-focusing effect becomes strong enough to
overcome diffraction widening and linear defocusing pro-
cesses. As a result GB width oscillates though initially
dominates diffraction widening and defocusing refraction
effect.

In Fig. 2 and Fig. 3 the influence of initial wave front
curvature on GB width evolution is depicted. One can
notice that when the initial wave front curvature is neg-
ative kg < 0, the GB width first decreases approaching
to minimum value and for the positive value of this pa-
rameter the GB width at once increases.

140 ,

trace 1
® @ trace?

\%4
—
o

Beam width kO

(5]
N

0
0 0.38 0.75 1.13

Distance z/LD

Fig. 3. Numerical solutions of Eq. (39) for the defo-
cusing refraction and parameters wo = 10\, ext,|Ao|? =
0.01, p=10"2 and L = 0.3Lp and trace 1: o = 5/Lp,
trace 2: ko = 0, trace 3: kKo = —5/Lp.

5. Conditions for uniform waveguide
in the presence of linear refraction

Demanding for the beam to propagate as a stationary
mode when F = f2 = 1 and ko = 0, Eq. (39) takes the

form
2enw]Ao’p | 4 1 enL]Aof L1
Ly wi(l+p) ~ L? )

+ = =2
wi(l+p)2 = L2

(43)

After simple modifications we obtain the expression

wW? = ! (44)

w2
e T o
where W2 = e.4m2w?2 /\? denotes dimensionless radius of
the waveguide. The parameter W depends on nonlinear
parameter p which is shown for different values of fibre
inhomogeneity scale L and different initial beam widths
wy in Fig. 4.

In Fig. 5 it is shown how dimensionless radius of the
waveguide depends on fibre inhomogeneity scale L for dif-
ferent values of nonlinear parameter p in the case of linear
focusing refraction and in Fig. 6 in the presence of linear
defocusing refraction. One can notice that radius of the
waveguide is minimum Wy, when the parameter p is
equal to unity p = 1. It takes place when enp,|Ag|? = &s.
As a result W,;, takes the form

2

es L2’
One can notice that when the contribution of linear re-
fraction is insignificant, then the minimum radius of the
waveguide approaches to constant value Wi, (L — 00)
= 2. In the case of focusing refraction (positive sign
in Eq. (44)) the minimum radius of the waveguide be-
comes smaller comparing to the case Wiy, (L — o0) = 2.
In the case of defocusing linear process (negative sign in

Winin = 2 / 1+ (45)
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Fig. 4. Dependence of the dimensionless radius of the
waveguide W on nonlinear parameter p in the case of
linear focusing refraction for parameters: wj/esL? =
1/32 (trace 1), wd/esL? = 1/16 (trace 2), wi/esL* =
1/8 (trace 3).
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Fig. 5. Dependence of the dimensionless radius of the
waveguide W on fibre inhomogeneity scale L in the
case of linear focusing refraction for the parameters
kiwi/es = 2 and p = 1 (trace 1), kjw3/es = 2 and
p =2 (trace 2), k{wd/es = 2 and p = 3 (trace 3).

Eq. (44)) this radius W becomes greater than Wi, (L —
o0) = 2.

In Fig. 5 one can notice that for the focusing refraction
the dimensionless radius of the waveguide W increases for
small values of inhomogeneity scale and next approaches
to constant value. In Fig. 6 one can distinguish that for
the defocusing refraction the dimensionless radius of the
waveguide W initially decreases and becomes constant,
when the parameter L becomes greater. Let us calcu-

frace 1
0@ ftracc?2
trace 3

Dimensionless radius of waveguide W

0 2 4 6 8 10 12
Inhomogeneity scake kol

Fig. 6. Dependence of the dimensionless radius of the
waveguide W on fibre inhomogeneity scale L in the case
of defocusing refraction for the parameters kwg/es =
1/2 and p = 1 (trace 1), kjwi/es = 1 and p = 2
(trace 2), k§wd/es = 2 and p = 3 (trace 3).

late also the power of the beam in uniform waveguide.
One can notice that standard form of total beam power
is equal to [10]:

1 2
P = gc\/eowg [Ao|” . (46)
Taking into account the definitions of nonlinear parame-
ter p = en|Ao|?/es and dimensionless radius of the wave-
guide W? = e.4n?w2 /A2, we can calculate the power of
the beam in uniform waveguide Py, which is equal to
cy/EoN2 W 2p

P =
uw 327T2ENL

(47)

6. Conclusion

The paper applies the method of CGO to the analy-
sis of the GB evolution in smoothly inhomogeneous and
nonlinear saturable media of cylindrical symmetry. The
CGO method reduces diffraction and self-focusing prob-
lems for the Gaussian beam to a solution of ordinary
differential equations, describing behaviour of the ampli-
tude, the beam width, and the curvature of the wave
front. CGO method readily provides a solution for in-
homogeneous nonlinear saturable fibre in a simpler way
than the standard methods of nonlinear optics such as:
the variation method approach, method of moments and
beam propagation method. Following analogously like in
papers [16-20] we model the light propagation in non-
linear fibres by Gaussian beam, which is self-sustained
solution within CGO method. Besides simplicity and af-
fectivity CGO method supplies a number of new results.

Firstly, it is shown in the paper how focusing/defocus-
ing refraction influences on GB width evolution in non-
linear saturable fibre.
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Secondly, it is presented that the CGO method effec-
tively describes joint influence of the refractive index pro-
file and the initial curvature of the wave front.

It is also shown how linear refraction influences on the
conditions of formation of the stationary mode and con-
ditions for minimum radius of the waveguide. This way
CGO method demonstrates high ability in further appli-
cations of nonlinear graded-index optics in both experi-
mental and theoretical problems.
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